/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016-2018 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/mperrno.h" #include "py/mphal.h" #include "drivers/memory/spiflash.h" #define QSPI_QE_MASK (0x02) #define USE_WR_DELAY (1) #define CMD_WRSR (0x01) #define CMD_WRITE (0x02) #define CMD_READ (0x03) #define CMD_RDSR (0x05) #define CMD_WREN (0x06) #define CMD_SEC_ERASE (0x20) #define CMD_RDCR (0x35) #define CMD_RD_DEVID (0x9f) #define CMD_CHIP_ERASE (0xc7) #define CMD_C4READ (0xeb) #define WAIT_SR_TIMEOUT (1000000) #define PAGE_SIZE (256) // maximum bytes we can write in one SPI transfer #define SECTOR_SIZE MP_SPIFLASH_ERASE_BLOCK_SIZE STATIC void mp_spiflash_acquire_bus(mp_spiflash_t *self) { const mp_spiflash_config_t *c = self->config; if (c->bus_kind == MP_SPIFLASH_BUS_QSPI) { c->bus.u_qspi.proto->ioctl(c->bus.u_qspi.data, MP_QSPI_IOCTL_BUS_ACQUIRE); } } STATIC void mp_spiflash_release_bus(mp_spiflash_t *self) { const mp_spiflash_config_t *c = self->config; if (c->bus_kind == MP_SPIFLASH_BUS_QSPI) { c->bus.u_qspi.proto->ioctl(c->bus.u_qspi.data, MP_QSPI_IOCTL_BUS_RELEASE); } } STATIC void mp_spiflash_write_cmd_data(mp_spiflash_t *self, uint8_t cmd, size_t len, uint32_t data) { const mp_spiflash_config_t *c = self->config; if (c->bus_kind == MP_SPIFLASH_BUS_SPI) { // Note: len/data are unused for standard SPI mp_hal_pin_write(c->bus.u_spi.cs, 0); c->bus.u_spi.proto->transfer(c->bus.u_spi.data, 1, &cmd, NULL); mp_hal_pin_write(c->bus.u_spi.cs, 1); } else { c->bus.u_qspi.proto->write_cmd_data(c->bus.u_qspi.data, cmd, len, data); } } STATIC void mp_spiflash_write_cmd_addr_data(mp_spiflash_t *self, uint8_t cmd, uint32_t addr, size_t len, const uint8_t *src) { const mp_spiflash_config_t *c = self->config; if (c->bus_kind == MP_SPIFLASH_BUS_SPI) { uint8_t buf[4] = {cmd, addr >> 16, addr >> 8, addr}; mp_hal_pin_write(c->bus.u_spi.cs, 0); c->bus.u_spi.proto->transfer(c->bus.u_spi.data, 4, buf, NULL); if (len) { c->bus.u_spi.proto->transfer(c->bus.u_spi.data, len, src, NULL); } mp_hal_pin_write(c->bus.u_spi.cs, 1); } else { c->bus.u_qspi.proto->write_cmd_addr_data(c->bus.u_qspi.data, cmd, addr, len, src); } } STATIC uint32_t mp_spiflash_read_cmd(mp_spiflash_t *self, uint8_t cmd, size_t len) { const mp_spiflash_config_t *c = self->config; if (c->bus_kind == MP_SPIFLASH_BUS_SPI) { uint32_t buf; mp_hal_pin_write(c->bus.u_spi.cs, 0); c->bus.u_spi.proto->transfer(c->bus.u_spi.data, 1, &cmd, NULL); c->bus.u_spi.proto->transfer(c->bus.u_spi.data, len, (void*)&buf, (void*)&buf); mp_hal_pin_write(c->bus.u_spi.cs, 1); return buf; } else { return c->bus.u_qspi.proto->read_cmd(c->bus.u_qspi.data, cmd, len); } } STATIC void mp_spiflash_read_data(mp_spiflash_t *self, uint32_t addr, size_t len, uint8_t *dest) { const mp_spiflash_config_t *c = self->config; if (c->bus_kind == MP_SPIFLASH_BUS_SPI) { uint8_t buf[4] = {CMD_READ, addr >> 16, addr >> 8, addr}; mp_hal_pin_write(c->bus.u_spi.cs, 0); c->bus.u_spi.proto->transfer(c->bus.u_spi.data, 4, buf, NULL); c->bus.u_spi.proto->transfer(c->bus.u_spi.data, len, dest, dest); mp_hal_pin_write(c->bus.u_spi.cs, 1); } else { c->bus.u_qspi.proto->read_cmd_qaddr_qdata(c->bus.u_qspi.data, CMD_C4READ, addr, len, dest); } } STATIC void mp_spiflash_write_cmd(mp_spiflash_t *self, uint8_t cmd) { mp_spiflash_write_cmd_data(self, cmd, 0, 0); } STATIC void mp_spiflash_write_cmd_addr(mp_spiflash_t *self, uint8_t cmd, uint32_t addr) { mp_spiflash_write_cmd_addr_data(self, cmd, addr, 0, NULL); } STATIC int mp_spiflash_wait_sr(mp_spiflash_t *self, uint8_t mask, uint8_t val, uint32_t timeout) { uint8_t sr; for (; timeout; --timeout) { sr = mp_spiflash_read_cmd(self, CMD_RDSR, 1); if ((sr & mask) == val) { break; } } if ((sr & mask) == val) { return 0; // success } else if (timeout == 0) { return -MP_ETIMEDOUT; } else { return -MP_EIO; } } STATIC int mp_spiflash_wait_wel1(mp_spiflash_t *self) { return mp_spiflash_wait_sr(self, 2, 2, WAIT_SR_TIMEOUT); } STATIC int mp_spiflash_wait_wip0(mp_spiflash_t *self) { return mp_spiflash_wait_sr(self, 1, 0, WAIT_SR_TIMEOUT); } void mp_spiflash_init(mp_spiflash_t *self) { self->flags = 0; if (self->config->bus_kind == MP_SPIFLASH_BUS_SPI) { mp_hal_pin_write(self->config->bus.u_spi.cs, 1); mp_hal_pin_output(self->config->bus.u_spi.cs); self->config->bus.u_spi.proto->ioctl(self->config->bus.u_spi.data, MP_SPI_IOCTL_INIT); } else { self->config->bus.u_qspi.proto->ioctl(self->config->bus.u_qspi.data, MP_QSPI_IOCTL_INIT); } mp_spiflash_acquire_bus(self); #if defined(CHECK_DEVID) // Validate device id uint32_t devid = mp_spiflash_read_cmd(self, CMD_RD_DEVID, 3); if (devid != CHECK_DEVID) { return 0; } #endif if (self->config->bus_kind == MP_SPIFLASH_BUS_QSPI) { // Set QE bit uint32_t data = (mp_spiflash_read_cmd(self, CMD_RDSR, 1) & 0xff) | (mp_spiflash_read_cmd(self, CMD_RDCR, 1) & 0xff) << 8; if (!(data & (QSPI_QE_MASK << 8))) { data |= QSPI_QE_MASK << 8; mp_spiflash_write_cmd(self, CMD_WREN); mp_spiflash_write_cmd_data(self, CMD_WRSR, 2, data); mp_spiflash_wait_wip0(self); } } mp_spiflash_release_bus(self); } STATIC int mp_spiflash_erase_sector(mp_spiflash_t *self, uint32_t addr) { // enable writes mp_spiflash_write_cmd(self, CMD_WREN); // wait WEL=1 int ret = mp_spiflash_wait_wel1(self); if (ret != 0) { return ret; } // erase the sector mp_spiflash_write_cmd_addr(self, CMD_SEC_ERASE, addr); // wait WIP=0 return mp_spiflash_wait_wip0(self); } STATIC int mp_spiflash_write_page(mp_spiflash_t *self, uint32_t addr, const uint8_t *src) { // enable writes mp_spiflash_write_cmd(self, CMD_WREN); // wait WEL=1 int ret = mp_spiflash_wait_wel1(self); if (ret != 0) { return ret; } // write the page mp_spiflash_write_cmd_addr_data(self, CMD_WRITE, addr, PAGE_SIZE, src); // wait WIP=0 return mp_spiflash_wait_wip0(self); } /******************************************************************************/ // Interface functions that use the cache void mp_spiflash_cached_read(mp_spiflash_t *self, uint32_t addr, size_t len, uint8_t *dest) { if (len == 0) { return; } mp_spiflash_acquire_bus(self); mp_spiflash_cache_t *cache = self->config->cache; if (cache->user == self && cache->block != 0xffffffff) { uint32_t bis = addr / SECTOR_SIZE; uint32_t bie = (addr + len - 1) / SECTOR_SIZE; if (bis <= cache->block && cache->block <= bie) { // Read straddles current buffer size_t rest = 0; if (bis < cache->block) { // Read direct from flash for first part rest = cache->block * SECTOR_SIZE - addr; mp_spiflash_read_data(self, addr, rest, dest); len -= rest; dest += rest; addr += rest; } uint32_t offset = addr & (SECTOR_SIZE - 1); rest = SECTOR_SIZE - offset; if (rest > len) { rest = len; } memcpy(dest, &cache->buf[offset], rest); len -= rest; if (len == 0) { mp_spiflash_release_bus(self); return; } dest += rest; addr += rest; } } // Read rest direct from flash mp_spiflash_read_data(self, addr, len, dest); mp_spiflash_release_bus(self); } STATIC void mp_spiflash_cache_flush_internal(mp_spiflash_t *self) { #if USE_WR_DELAY if (!(self->flags & 1)) { return; } self->flags &= ~1; mp_spiflash_cache_t *cache = self->config->cache; // Erase sector int ret = mp_spiflash_erase_sector(self, cache->block * SECTOR_SIZE); if (ret != 0) { return; } // Write for (int i = 0; i < 16; i += 1) { int ret = mp_spiflash_write_page(self, cache->block * SECTOR_SIZE + i * PAGE_SIZE, cache->buf + i * PAGE_SIZE); if (ret != 0) { return; } } #endif } void mp_spiflash_cache_flush(mp_spiflash_t *self) { mp_spiflash_acquire_bus(self); mp_spiflash_cache_flush_internal(self); mp_spiflash_release_bus(self); } STATIC int mp_spiflash_cached_write_part(mp_spiflash_t *self, uint32_t addr, size_t len, const uint8_t *src) { // Align to 4096 sector uint32_t offset = addr & 0xfff; uint32_t sec = addr >> 12; addr = sec << 12; // Restriction for now, so we don't need to erase multiple pages if (offset + len > SECTOR_SIZE) { printf("mp_spiflash_cached_write_part: len is too large\n"); return -MP_EIO; } mp_spiflash_cache_t *cache = self->config->cache; // Acquire the sector buffer if (cache->user != self) { if (cache->user != NULL) { mp_spiflash_cache_flush(cache->user); } cache->user = self; cache->block = 0xffffffff; } if (cache->block != sec) { // Read sector #if USE_WR_DELAY if (cache->block != 0xffffffff) { mp_spiflash_cache_flush_internal(self); } #endif mp_spiflash_read_data(self, addr, SECTOR_SIZE, cache->buf); } #if USE_WR_DELAY cache->block = sec; // Just copy to buffer memcpy(cache->buf + offset, src, len); // And mark dirty self->flags |= 1; #else uint32_t dirty = 0; for (size_t i = 0; i < len; ++i) { if (cache->buf[offset + i] != src[i]) { if (cache->buf[offset + i] != 0xff) { // Erase sector int ret = mp_spiflash_erase_sector(self, addr); if (ret != 0) { return ret; } dirty = 0xffff; break; } else { dirty |= (1 << ((offset + i) >> 8)); } } } cache->block = sec; // Copy new block into buffer memcpy(cache->buf + offset, src, len); // Write sector in pages of 256 bytes for (size_t i = 0; i < 16; ++i) { if (dirty & (1 << i)) { int ret = mp_spiflash_write_page(self, addr + i * PAGE_SIZE, cache->buf + i * PAGE_SIZE); if (ret != 0) { return ret; } } } #endif return 0; // success } int mp_spiflash_cached_write(mp_spiflash_t *self, uint32_t addr, size_t len, const uint8_t *src) { uint32_t bis = addr / SECTOR_SIZE; uint32_t bie = (addr + len - 1) / SECTOR_SIZE; mp_spiflash_acquire_bus(self); mp_spiflash_cache_t *cache = self->config->cache; if (cache->user == self && bis <= cache->block && bie >= cache->block) { // Write straddles current buffer uint32_t pre; uint32_t offset; if (cache->block * SECTOR_SIZE >= addr) { pre = cache->block * SECTOR_SIZE - addr; offset = 0; } else { pre = 0; offset = addr - cache->block * SECTOR_SIZE; } // Write buffered part first uint32_t len_in_buf = len - pre; len = 0; if (len_in_buf > SECTOR_SIZE - offset) { len = len_in_buf - (SECTOR_SIZE - offset); len_in_buf = SECTOR_SIZE - offset; } memcpy(&cache->buf[offset], &src[pre], len_in_buf); self->flags |= 1; // Mark dirty // Write part before buffer sector while (pre) { int rest = pre & (SECTOR_SIZE - 1); if (rest == 0) { rest = SECTOR_SIZE; } int ret = mp_spiflash_cached_write_part(self, addr, rest, src); if (ret != 0) { mp_spiflash_release_bus(self); return ret; } src += rest; addr += rest; pre -= rest; } src += len_in_buf; addr += len_in_buf; // Fall through to write remaining part } uint32_t offset = addr & (SECTOR_SIZE - 1); while (len) { int rest = SECTOR_SIZE - offset; if (rest > len) { rest = len; } int ret = mp_spiflash_cached_write_part(self, addr, rest, src); if (ret != 0) { mp_spiflash_release_bus(self); return ret; } len -= rest; addr += rest; src += rest; offset = 0; } mp_spiflash_release_bus(self); return 0; }