#include #include #include #include #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "mpqstr.h" #include "obj.h" #include "map.h" #include "runtime.h" /******************************************************************************/ // class object // creating an instance of a class makes one of these objects typedef struct _mp_obj_class_t { mp_obj_base_t base; mp_map_t members; } mp_obj_class_t; static mp_obj_t mp_obj_new_class(mp_obj_t class) { mp_obj_class_t *o = m_new_obj(mp_obj_class_t); o->base.type = class; mp_map_init(&o->members, 0); return o; } static mp_map_elem_t *mp_obj_class_lookup(const mp_obj_type_t *type, qstr attr, mp_map_lookup_kind_t lookup_kind) { for (;;) { if (type->locals_dict == NULL) { return NULL; } assert(MP_OBJ_IS_TYPE(type->locals_dict, &dict_type)); // Micro Python restriction, for now mp_map_t *locals_map = ((void*)type->locals_dict + sizeof(mp_obj_base_t)); // XXX hack to get map object from dict object mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), lookup_kind); if (elem != NULL) { return elem; } // attribute not found, keep searching base classes // for a const struct, this entry might be NULL if (type->bases_tuple == MP_OBJ_NULL) { return NULL; } uint len; mp_obj_t *items; mp_obj_tuple_get(type->bases_tuple, &len, &items); if (len == 0) { return NULL; } for (uint i = 0; i < len - 1; i++) { assert(MP_OBJ_IS_TYPE(items[i], &mp_const_type)); elem = mp_obj_class_lookup((mp_obj_type_t*)items[i], attr, lookup_kind); if (elem != NULL) { return elem; } } // search last base (simple tail recursion elimination) assert(MP_OBJ_IS_TYPE(items[len - 1], &mp_const_type)); type = (mp_obj_type_t*)items[len - 1]; } } static void class_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { print(env, "<%s object at %p>", mp_obj_get_type_str(self_in), self_in); } // args are reverse in the array static mp_obj_t class_make_new(mp_obj_t self_in, int n_args, const mp_obj_t *args) { assert(MP_OBJ_IS_TYPE(self_in, &mp_const_type)); mp_obj_type_t *self = self_in; mp_obj_t o = mp_obj_new_class(self_in); // look for __init__ function mp_map_elem_t *init_fn = mp_obj_class_lookup(self, MP_QSTR___init__, MP_MAP_LOOKUP); if (init_fn != NULL) { // call __init__ function mp_obj_t init_ret; if (n_args == 0) { init_ret = rt_call_function_n(init_fn->value, 1, (mp_obj_t*)&o); } else { mp_obj_t *args2 = m_new(mp_obj_t, n_args + 1); memcpy(args2, args, n_args * sizeof(mp_obj_t)); args2[n_args] = o; init_ret = rt_call_function_n(init_fn->value, n_args + 1, args2); m_del(mp_obj_t, args2, n_args + 1); } if (init_ret != mp_const_none) { nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "__init__() should return None, not '%s'", mp_obj_get_type_str(init_ret))); } } else { // TODO if (n_args != 0) { nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "function takes 0 positional arguments but %d were given", (void*)(machine_int_t)n_args)); } } return o; } static void class_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { // logic: look in obj members then class locals (TODO check this against CPython) mp_obj_class_t *self = self_in; mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); if (elem != NULL) { // object member, always treated as a value dest[1] = elem->value; return; } elem = mp_obj_class_lookup(self->base.type, attr, MP_MAP_LOOKUP); if (elem != NULL) { if (mp_obj_is_callable(elem->value)) { // class member is callable so build a bound method dest[1] = elem->value; dest[0] = self_in; return; } else { // class member is a value, so just return that value dest[1] = elem->value; return; } } } static bool class_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) { // logic: look in class locals (no add) then obj members (add) (TODO check this against CPython) mp_obj_class_t *self = self_in; mp_map_elem_t *elem = mp_obj_class_lookup(self->base.type, attr, MP_MAP_LOOKUP); if (elem != NULL) { elem->value = value; } else { mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value; } return true; } /******************************************************************************/ // type object // - the struct is mp_obj_type_t and is defined in obj.h so const types can be made // - there is a constant mp_obj_type_t (called mp_const_type) for the 'type' object // - creating a new class (a new type) creates a new mp_obj_type_t static void type_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { mp_obj_type_t *self = self_in; print(env, "", self->name); } // args are reverse in the array static mp_obj_t type_make_new(mp_obj_t type_in, int n_args, const mp_obj_t *args) { switch (n_args) { case 1: return mp_obj_get_type(args[0]); case 3: // args[2] = name // args[1] = bases tuple // args[0] = locals dict return mp_obj_new_type(mp_obj_get_qstr(args[2]), args[1], args[0]); default: nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "type takes at 1 or 3 arguments")); } } // args are in reverse order in the array static mp_obj_t type_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) { // instantiate an instance of a class mp_obj_type_t *self = self_in; if (self->make_new == NULL) { nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "cannot create '%s' instances", self->name)); } // make new instance mp_obj_t o = self->make_new(self, n_args, args); // return new instance return o; } // for fail, do nothing; for attr, dest[1] = value; for method, dest[0] = self, dest[1] = method static void type_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { assert(MP_OBJ_IS_TYPE(self_in, &mp_const_type)); mp_obj_type_t *self = self_in; mp_map_elem_t *elem = mp_obj_class_lookup(self, attr, MP_MAP_LOOKUP); if (elem != NULL) { dest[1] = elem->value; return; } // generic method lookup // this is a lookup in the class itself (ie not the classes type or instance) const mp_method_t *meth = self->methods; if (meth != NULL) { for (; meth->name != NULL; meth++) { if (strcmp(meth->name, qstr_str(attr)) == 0) { // check if the methods are functions, static or class methods // see http://docs.python.org/3.3/howto/descriptor.html if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_staticmethod)) { // return just the function dest[1] = ((mp_obj_staticmethod_t*)meth->fun)->fun; } else if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_classmethod)) { // return a bound method, with self being this class dest[1] = ((mp_obj_classmethod_t*)meth->fun)->fun; dest[0] = self_in; } else { // return just the function // TODO need to wrap in a type check for the first argument; eg list.append(1,1) needs to throw an exception dest[1] = (mp_obj_t)meth->fun; } return; } } } } static bool type_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) { assert(MP_OBJ_IS_TYPE(self_in, &mp_const_type)); mp_obj_type_t *self = self_in; // TODO CPython allows STORE_ATTR to a class, but is this the correct implementation? mp_map_elem_t *elem = mp_obj_class_lookup(self, attr, MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); if (elem != NULL) { elem->value = value; return true; } else { return false; } } const mp_obj_type_t mp_const_type = { { &mp_const_type }, "type", .print = type_print, .make_new = type_make_new, .call_n = type_call_n, .load_attr = type_load_attr, .store_attr = type_store_attr, }; mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict) { assert(MP_OBJ_IS_TYPE(bases_tuple, &tuple_type)); // Micro Python restriction, for now assert(MP_OBJ_IS_TYPE(locals_dict, &dict_type)); // Micro Python restriction, for now mp_obj_type_t *o = m_new0(mp_obj_type_t, 1); o->base.type = &mp_const_type; o->name = qstr_str(name); o->print = class_print; o->make_new = class_make_new; o->load_attr = class_load_attr; o->store_attr = class_store_attr; o->bases_tuple = bases_tuple; o->locals_dict = locals_dict; return o; } /******************************************************************************/ // built-ins specific to types static mp_obj_t mp_builtin_issubclass(mp_obj_t object, mp_obj_t classinfo) { if (!MP_OBJ_IS_TYPE(object, &mp_const_type)) { nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "issubclass() arg 1 must be a class")); } // TODO support a tuple of classes for second argument if (!MP_OBJ_IS_TYPE(classinfo, &mp_const_type)) { nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "issubclass() arg 2 must be a class")); } for (;;) { if (object == classinfo) { return mp_const_true; } // not equivalent classes, keep searching base classes assert(MP_OBJ_IS_TYPE(object, &mp_const_type)); mp_obj_type_t *self = object; // for a const struct, this entry might be NULL if (self->bases_tuple == MP_OBJ_NULL) { return mp_const_false; } uint len; mp_obj_t *items; mp_obj_tuple_get(self->bases_tuple, &len, &items); if (len == 0) { return mp_const_false; } for (uint i = 0; i < len - 1; i++) { if (mp_builtin_issubclass(items[i], classinfo) == mp_const_true) { return mp_const_true; } } // search last base (simple tail recursion elimination) object = items[len - 1]; } } MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_issubclass_obj, mp_builtin_issubclass); static mp_obj_t mp_builtin_isinstance(mp_obj_t object, mp_obj_t classinfo) { return mp_builtin_issubclass(mp_obj_get_type(object), classinfo); } MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_isinstance_obj, mp_builtin_isinstance); /******************************************************************************/ // staticmethod and classmethod types (probably should go in a different file) const mp_obj_type_t mp_type_staticmethod = { { &mp_const_type }, "staticmethod", }; const mp_obj_type_t mp_type_classmethod = { { &mp_const_type }, "classmethod", };