/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries * SPDX-FileCopyrightText: Copyright (c) 2016 Damien P. George * Copyright (c) 2019 Artur Pacholec * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "common-hal/pwmio/PWMOut.h" #include "shared-bindings/pwmio/PWMOut.h" #include "shared-bindings/microcontroller/Processor.h" #include "fsl_pwm.h" #include "supervisor/shared/translate.h" #include "periph.h" #include // TODO // #include "samd/pins.h" // #undef ENABLE // // # define _TCC_SIZE(unused, n) TCC ## n ## _SIZE, // # define TCC_SIZES { REPEAT_MACRO(_TCC_SIZE, 0, TCC_INST_NUM) } // // static uint32_t tcc_periods[TCC_INST_NUM]; // static uint32_t tc_periods[TC_INST_NUM]; // // uint32_t target_tcc_frequencies[TCC_INST_NUM]; // uint8_t tcc_refcount[TCC_INST_NUM]; // //// This bitmask keeps track of which channels of a TCC are currently claimed. // #ifdef SAMD21 // uint8_t tcc_channels[3]; // Set by pwmout_reset() to {0xf0, 0xfc, 0xfc} initially. // #endif // #ifdef SAMD51 // uint8_t tcc_channels[5]; // Set by pwmout_reset() to {0xc0, 0xf0, 0xf8, 0xfc, 0xfc} initially. // #endif // // static uint8_t never_reset_tc_or_tcc[TC_INST_NUM + TCC_INST_NUM]; void common_hal_pwmio_pwmout_never_reset(pwmio_pwmout_obj_t *self) { // if (self->timer->is_tc) { // never_reset_tc_or_tcc[self->timer->index] += 1; // } else { // never_reset_tc_or_tcc[TC_INST_NUM + self->timer->index] += 1; // } // // never_reset_pin_number(self->pin->number); } void common_hal_pwmio_pwmout_reset_ok(pwmio_pwmout_obj_t *self) { // if (self->timer->is_tc) { // never_reset_tc_or_tcc[self->timer->index] -= 1; // } else { // never_reset_tc_or_tcc[TC_INST_NUM + self->timer->index] -= 1; // } } void pwmout_reset(void) { // // Reset all timers // for (int i = 0; i < TCC_INST_NUM; i++) { // target_tcc_frequencies[i] = 0; // tcc_refcount[i] = 0; // } // Tcc *tccs[TCC_INST_NUM] = TCC_INSTS; // for (int i = 0; i < TCC_INST_NUM; i++) { // if (never_reset_tc_or_tcc[TC_INST_NUM + i] > 0) { // continue; // } // // Disable the module before resetting it. // if (tccs[i]->CTRLA.bit.ENABLE == 1) { // tccs[i]->CTRLA.bit.ENABLE = 0; // while (tccs[i]->SYNCBUSY.bit.ENABLE == 1) { // } // } // uint8_t mask = 0xff; // for (uint8_t j = 0; j < tcc_cc_num[i]; j++) { // mask <<= 1; // } // tcc_channels[i] = mask; // tccs[i]->CTRLA.bit.SWRST = 1; // while (tccs[i]->CTRLA.bit.SWRST == 1) { // } // } // Tc *tcs[TC_INST_NUM] = TC_INSTS; // for (int i = 0; i < TC_INST_NUM; i++) { // if (never_reset_tc_or_tcc[i] > 0) { // continue; // } // tcs[i]->COUNT16.CTRLA.bit.SWRST = 1; // while (tcs[i]->COUNT16.CTRLA.bit.SWRST == 1) { // } // } } // static uint8_t tcc_channel(const pin_timer_t* t) { // // For the SAMD51 this hardcodes the use of OTMX == 0x0, the output matrix mapping, which uses // // SAMD21-style modulo mapping. // return t->wave_output % tcc_cc_num[t->index]; // } // bool channel_ok(const pin_timer_t* t) { // uint8_t channel_bit = 1 << tcc_channel(t); // return (!t->is_tc && ((tcc_channels[t->index] & channel_bit) == 0)) || // t->is_tc; // } #define PWM_SRC_CLK_FREQ CLOCK_GetFreq(kCLOCK_IpgClk) pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t *self, const mcu_pin_obj_t *pin, uint16_t duty, uint32_t frequency, bool variable_frequency) { self->pin = pin; self->variable_frequency = variable_frequency; const uint32_t pwm_count = sizeof(mcu_pwm_list) / sizeof(mcu_pwm_obj_t); for (uint32_t i = 0; i < pwm_count; ++i) { if (mcu_pwm_list[i].pin != pin) { continue; } printf("pwm: 0x%p, sum %d, chan %d, mux %d\r\n", mcu_pwm_list[i].pwm, mcu_pwm_list[i].submodule, mcu_pwm_list[i].channel, mcu_pwm_list[i].mux_mode); self->pwm = &mcu_pwm_list[i]; break; } if (self->pwm == NULL) { return PWMOUT_INVALID_PIN; } CLOCK_SetDiv(kCLOCK_AhbDiv, 0x2); /* Set AHB PODF to 2, divide by 3 */ CLOCK_SetDiv(kCLOCK_IpgDiv, 0x3); /* Set IPG PODF to 3, divede by 4 */ // TODO re-enable // IOMUXC_SetPinMux( // IOMUXC_GPIO_SD_02_FLEXPWM1_PWM0_A, /* GPIO_02 is configured as FLEXPWM1_PWM0_A */ // 0U); /* Software Input On Field: Input Path is determined by functionality */ // // IOMUXC_SetPinConfig( // IOMUXC_GPIO_SD_02_FLEXPWM1_PWM0_A, /* GPIO_02 PAD functional properties : */ // 0x10A0U); /* Slew Rate Field: Slow Slew Rate // Drive Strength Field: R0/4 // Speed Field: fast(150MHz) // Open Drain Enable Field: Open Drain Disabled // Pull / Keep Enable Field: Pull/Keeper Enabled // Pull / Keep Select Field: Keeper // Pull Up / Down Config. Field: 100K Ohm Pull Down // Hyst. Enable Field: Hysteresis Disabled */ pwm_config_t pwmConfig; /* * pwmConfig.enableDebugMode = false; * pwmConfig.enableWait = false; * pwmConfig.reloadSelect = kPWM_LocalReload; * pwmConfig.faultFilterCount = 0; * pwmConfig.faultFilterPeriod = 0; * pwmConfig.clockSource = kPWM_BusClock; * pwmConfig.prescale = kPWM_Prescale_Divide_1; * pwmConfig.initializationControl = kPWM_Initialize_LocalSync; * pwmConfig.forceTrigger = kPWM_Force_Local; * pwmConfig.reloadFrequency = kPWM_LoadEveryOportunity; * pwmConfig.reloadLogic = kPWM_ReloadImmediate; * pwmConfig.pairOperation = kPWM_Independent; */ PWM_GetDefaultConfig(&pwmConfig); // pwmConfig.reloadLogic = kPWM_ReloadPwmFullCycle; pwmConfig.enableDebugMode = true; if (PWM_Init(PWM1, self->pwm->submodule, &pwmConfig) == kStatus_Fail) { printf("PWM initialization failed\r\n"); return PWMOUT_INVALID_PIN; } pwm_signal_param_t pwmSignal; /* Set deadtime count, we set this to about 650ns */ uint16_t deadTimeVal = ((uint64_t)PWM_SRC_CLK_FREQ * 650) / 1000000000; pwmSignal.pwmChannel = self->pwm->channel; pwmSignal.level = kPWM_HighTrue; pwmSignal.dutyCyclePercent = frequency / 2; /* 1 percent dutycycle */ pwmSignal.deadtimeValue = deadTimeVal; PWM_SetupPwm(PWM1, self->pwm->submodule, &pwmSignal, 1, kPWM_SignedCenterAligned, frequency, PWM_SRC_CLK_FREQ); PWM_SetPwmLdok(PWM1, kPWM_Control_Module_0 | kPWM_Control_Module_1 | kPWM_Control_Module_2, true); PWM_StartTimer(PWM1, kPWM_Control_Module_0 | kPWM_Control_Module_1 | kPWM_Control_Module_2); // if (frequency == 0 || frequency > 6000000) { // return PWMOUT_INVALID_FREQUENCY; // } // // Figure out which timer we are using. // // First see if a tcc is already going with the frequency we want and our // // channel is unused. tc's don't have enough channels to share. // const pin_timer_t* timer = NULL; // uint8_t mux_position = 0; // if (!variable_frequency) { // for (uint8_t i = 0; i < TCC_INST_NUM && timer == NULL; i++) { // if (target_tcc_frequencies[i] != frequency) { // continue; // } // for (uint8_t j = 0; j < NUM_TIMERS_PER_PIN && timer == NULL; j++) { // const pin_timer_t* t = &pin->timer[j]; // if (t->index != i || t->is_tc || t->index >= TCC_INST_NUM) { // continue; // } // Tcc* tcc = tcc_insts[t->index]; // if (tcc->CTRLA.bit.ENABLE == 1 && channel_ok(t)) { // timer = t; // mux_position = j; // // Claim channel. // tcc_channels[timer->index] |= (1 << tcc_channel(timer)); // // } // } // } // } // // // No existing timer has been found, so find a new one to use and set it up. // if (timer == NULL) { // // By default, with fixed frequency we want to share a TCC because its likely we'll have // // other outputs at the same frequency. If the frequency is variable then we'll only have // // one output so we start with the TCs to see if they work. // int8_t direction = -1; // uint8_t start = NUM_TIMERS_PER_PIN - 1; // bool found = false; // if (variable_frequency) { // direction = 1; // start = 0; // } // for (int8_t i = start; i >= 0 && i < NUM_TIMERS_PER_PIN && timer == NULL; i += direction) { // const pin_timer_t* t = &pin->timer[i]; // if ((!t->is_tc && t->index >= TCC_INST_NUM) || // (t->is_tc && t->index >= TC_INST_NUM)) { // continue; // } // if (t->is_tc) { // found = true; // Tc* tc = tc_insts[t->index]; // if (tc->COUNT16.CTRLA.bit.ENABLE == 0 && t->wave_output == 1) { // timer = t; // mux_position = i; // } // } else { // Tcc* tcc = tcc_insts[t->index]; // if (tcc->CTRLA.bit.ENABLE == 0 && channel_ok(t)) { // timer = t; // mux_position = i; // } // } // } // // if (timer == NULL) { // if (found) { // return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE; // } // return PWMOUT_ALL_TIMERS_IN_USE; // } // // uint8_t resolution = 0; // if (timer->is_tc) { // resolution = 16; // } else { // // TCC resolution varies so look it up. // const uint8_t _tcc_sizes[TCC_INST_NUM] = TCC_SIZES; // resolution = _tcc_sizes[timer->index]; // } // // First determine the divisor that gets us the highest resolution. // uint32_t system_clock = common_hal_mcu_processor_get_frequency(); // uint32_t top; // uint8_t divisor; // for (divisor = 0; divisor < 8; divisor++) { // top = (system_clock / prescaler[divisor] / frequency) - 1; // if (top < (1u << resolution)) { // break; // } // } // // set_timer_handler(timer->is_tc, timer->index, TC_HANDLER_NO_INTERRUPT); // // We use the zeroeth clock on either port to go full speed. // turn_on_clocks(timer->is_tc, timer->index, 0); // // if (timer->is_tc) { // tc_periods[timer->index] = top; // Tc* tc = tc_insts[timer->index]; // #ifdef SAMD21 // tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | // TC_CTRLA_PRESCALER(divisor) | // TC_CTRLA_WAVEGEN_MPWM; // tc->COUNT16.CC[0].reg = top; // #endif // #ifdef SAMD51 // // tc->COUNT16.CTRLA.bit.SWRST = 1; // while (tc->COUNT16.CTRLA.bit.SWRST == 1) { // } // tc_set_enable(tc, false); // tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | TC_CTRLA_PRESCALER(divisor); // tc->COUNT16.WAVE.reg = TC_WAVE_WAVEGEN_MPWM; // tc->COUNT16.CCBUF[0].reg = top; // tc->COUNT16.CCBUF[1].reg = 0; // #endif // // tc_set_enable(tc, true); // } else { // tcc_periods[timer->index] = top; // Tcc* tcc = tcc_insts[timer->index]; // tcc_set_enable(tcc, false); // tcc->CTRLA.bit.PRESCALER = divisor; // tcc->PER.bit.PER = top; // tcc->WAVE.bit.WAVEGEN = TCC_WAVE_WAVEGEN_NPWM_Val; // tcc_set_enable(tcc, true); // target_tcc_frequencies[timer->index] = frequency; // tcc_refcount[timer->index]++; // if (variable_frequency) { // // We're changing frequency so claim all of the channels. // tcc_channels[timer->index] = 0xff; // } else { // tcc_channels[timer->index] |= (1 << tcc_channel(timer)); // } // } // } // // self->timer = timer; // // gpio_set_pin_function(pin->number, GPIO_PIN_FUNCTION_E + mux_position); common_hal_pwmio_pwmout_set_duty_cycle(self, duty); return PWMOUT_OK; } bool common_hal_pwmio_pwmout_deinited(pwmio_pwmout_obj_t *self) { return self->pin == NULL; } void common_hal_pwmio_pwmout_deinit(pwmio_pwmout_obj_t *self) { if (common_hal_pwmio_pwmout_deinited(self)) { return; } // const pin_timer_t* t = self->timer; // if (t->is_tc) { // Tc* tc = tc_insts[t->index]; // tc_set_enable(tc, false); // tc->COUNT16.CTRLA.bit.SWRST = true; // tc_wait_for_sync(tc); // } else { // tcc_refcount[t->index]--; // tcc_channels[t->index] &= ~(1 << tcc_channel(t)); // if (tcc_refcount[t->index] == 0) { // target_tcc_frequencies[t->index] = 0; // Tcc* tcc = tcc_insts[t->index]; // tcc_set_enable(tcc, false); // tcc->CTRLA.bit.SWRST = true; // while (tcc->SYNCBUSY.bit.SWRST != 0) { // /* Wait for sync */ // } // } // } // reset_pin_number(self->pin->number); self->pin = NULL; } void common_hal_pwmio_pwmout_set_duty_cycle(pwmio_pwmout_obj_t *self, uint16_t duty) { PWM_UpdatePwmDutycycle(PWM1, self->pwm->submodule, self->pwm->channel, kPWM_SignedCenterAligned, duty); // const pin_timer_t* t = self->timer; // if (t->is_tc) { // uint16_t adjusted_duty = tc_periods[t->index] * duty / 0xffff; // #ifdef SAMD21 // tc_insts[t->index]->COUNT16.CC[t->wave_output].reg = adjusted_duty; // #endif // #ifdef SAMD51 // Tc* tc = tc_insts[t->index]; // while (tc->COUNT16.SYNCBUSY.bit.CC1 != 0) {} // tc->COUNT16.CCBUF[1].reg = adjusted_duty; // #endif // } else { // uint32_t adjusted_duty = ((uint64_t) tcc_periods[t->index]) * duty / 0xffff; // uint8_t channel = tcc_channel(t); // Tcc* tcc = tcc_insts[t->index]; // // // Write into the CC buffer register, which will be transferred to the // // CC register on an UPDATE (when period is finished). // // Do clock domain syncing as necessary. // // while (tcc->SYNCBUSY.reg != 0) {} // // // Lock out double-buffering while updating the CCB value. // tcc->CTRLBSET.bit.LUPD = 1; // #ifdef SAMD21 // tcc->CCB[channel].reg = adjusted_duty; // #endif // #ifdef SAMD51 // tcc->CCBUF[channel].reg = adjusted_duty; // #endif // tcc->CTRLBCLR.bit.LUPD = 1; // } } uint16_t common_hal_pwmio_pwmout_get_duty_cycle(pwmio_pwmout_obj_t *self) { return 0; // const pin_timer_t* t = self->timer; // if (t->is_tc) { // Tc* tc = tc_insts[t->index]; // tc_wait_for_sync(tc); // uint16_t cv = tc->COUNT16.CC[t->wave_output].reg; // return cv * 0xffff / tc_periods[t->index]; // } else { // Tcc* tcc = tcc_insts[t->index]; // uint8_t channel = tcc_channel(t); // uint32_t cv = 0; // // while (tcc->SYNCBUSY.bit.CTRLB) {} // // #ifdef SAMD21 // // If CCBV (CCB valid) is set, the CCB value hasn't yet been copied // // to the CC value. // if ((tcc->STATUS.vec.CCBV & (1 << channel)) != 0) { // cv = tcc->CCB[channel].reg; // } else { // cv = tcc->CC[channel].reg; // } // #endif // #ifdef SAMD51 // if ((tcc->STATUS.vec.CCBUFV & (1 << channel)) != 0) { // cv = tcc->CCBUF[channel].reg; // } else { // cv = tcc->CC[channel].reg; // } // #endif // // uint32_t duty_cycle = ((uint64_t) cv) * 0xffff / tcc_periods[t->index]; // // return duty_cycle; // } } void common_hal_pwmio_pwmout_set_frequency(pwmio_pwmout_obj_t *self, uint32_t frequency) { // if (frequency == 0 || frequency > 6000000) { // mp_raise_ValueError(translate("Invalid PWM frequency")); // } // const pin_timer_t* t = self->timer; // uint8_t resolution; // if (t->is_tc) { // resolution = 16; // } else { // resolution = 24; // } // uint32_t system_clock = common_hal_mcu_processor_get_frequency(); // uint32_t new_top; // uint8_t new_divisor; // for (new_divisor = 0; new_divisor < 8; new_divisor++) { // new_top = (system_clock / prescaler[new_divisor] / frequency) - 1; // if (new_top < (1u << resolution)) { // break; // } // } // uint16_t old_duty = common_hal_pwmio_pwmout_get_duty_cycle(self); // if (t->is_tc) { // Tc* tc = tc_insts[t->index]; // uint8_t old_divisor = tc->COUNT16.CTRLA.bit.PRESCALER; // if (new_divisor != old_divisor) { // tc_set_enable(tc, false); // tc->COUNT16.CTRLA.bit.PRESCALER = new_divisor; // tc_set_enable(tc, true); // } // tc_periods[t->index] = new_top; // #ifdef SAMD21 // tc->COUNT16.CC[0].reg = new_top; // #endif // #ifdef SAMD51 // while (tc->COUNT16.SYNCBUSY.reg != 0) {} // tc->COUNT16.CCBUF[0].reg = new_top; // #endif // } else { // Tcc* tcc = tcc_insts[t->index]; // uint8_t old_divisor = tcc->CTRLA.bit.PRESCALER; // if (new_divisor != old_divisor) { // tcc_set_enable(tcc, false); // tcc->CTRLA.bit.PRESCALER = new_divisor; // tcc_set_enable(tcc, true); // } // while (tcc->SYNCBUSY.reg != 0) {} // tcc_periods[t->index] = new_top; // #ifdef SAMD21 // tcc->PERB.bit.PERB = new_top; // #endif // #ifdef SAMD51 // tcc->PERBUF.bit.PERBUF = new_top; // #endif // } // common_hal_pwmio_pwmout_set_duty_cycle(self, old_duty); } uint32_t common_hal_pwmio_pwmout_get_frequency(pwmio_pwmout_obj_t *self) { // uint32_t system_clock = common_hal_mcu_processor_get_frequency(); // const pin_timer_t* t = self->timer; // uint8_t divisor; // uint32_t top; // if (t->is_tc) { // divisor = tc_insts[t->index]->COUNT16.CTRLA.bit.PRESCALER; // top = tc_periods[t->index]; // } else { // divisor = tcc_insts[t->index]->CTRLA.bit.PRESCALER; // top = tcc_periods[t->index]; // } // return (system_clock / prescaler[divisor]) / (top + 1); return 0; } bool common_hal_pwmio_pwmout_get_variable_frequency(pwmio_pwmout_obj_t *self) { return self->variable_frequency; }