/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 microDev * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/busio/UART.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/runtime.h" #include "supervisor/shared/tick.h" #include "shared/runtime/interrupt_char.h" #include "shared-bindings/microcontroller/Pin.h" #include "peripherals/broadcom/cpu.h" #include "peripherals/broadcom/defines.h" #include "peripherals/broadcom/gpio.h" #include "peripherals/broadcom/interrupts.h" #include "peripherals/broadcom/vcmailbox.h" #define NO_PIN 0xff // UART1 is a different peripheral than the rest so it is hardcoded below. #if BCM_VERSION == 2711 #define NUM_UART (6) STATIC ARM_UART_PL011_Type *uart[NUM_UART] = {UART0, NULL, UART2, UART3, UART4, UART5}; #else #define NUM_UART (2) STATIC ARM_UART_PL011_Type *uart[NUM_UART] = {UART0, NULL}; #endif typedef enum { STATUS_FREE = 0, STATUS_BUSY, STATUS_NEVER_RESET } uart_status_t; static uart_status_t uart_status[NUM_UART]; static busio_uart_obj_t *active_uart[NUM_UART]; void reset_uart(void) { bool any_pl011_active = false; for (uint8_t num = 0; num < NUM_UART; num++) { if (uart_status[num] == STATUS_BUSY) { if (num == 1) { UART1->IER_b.DATA_READY = false; UART1->CNTL = 0; COMPLETE_MEMORY_READS; AUX->ENABLES_b.UART_1 = false; } else { ARM_UART_PL011_Type *pl011 = uart[num]; pl011->CR = 0; } active_uart[num] = NULL; uart_status[num] = STATUS_FREE; } else { any_pl011_active = any_pl011_active || (num != 1 && uart_status[num] == STATUS_NEVER_RESET); } } if (!any_pl011_active) { BP_DisableIRQ(UART_IRQn); } COMPLETE_MEMORY_READS; if (AUX->ENABLES == 0) { BP_DisableIRQ(AUX_IRQn); } } STATIC void fetch_all_from_fifo(busio_uart_obj_t *self) { if (self->uart_id == 1) { while (UART1->STAT_b.DATA_READY && ringbuf_num_empty(&self->ringbuf) > 0) { int c = UART1->IO_b.DATA; if (self->sigint_enabled && c == mp_interrupt_char) { mp_sched_keyboard_interrupt(); continue; } ringbuf_put(&self->ringbuf, c); } } else { ARM_UART_PL011_Type *pl011 = uart[self->uart_id]; while (!pl011->FR_b.RXFE && ringbuf_num_empty(&self->ringbuf) > 0) { int c = pl011->DR_b.DATA; if (self->sigint_enabled && c == mp_interrupt_char) { mp_sched_keyboard_interrupt(); continue; } ringbuf_put(&self->ringbuf, c); } } } void UART1_IRQHandler(void) { fetch_all_from_fifo(active_uart[1]); // We couldn't read all pending data (overrun) so clear the FIFO so that the interrupt // can finish. if (UART1->STAT_b.DATA_READY) { UART1->IIR_b.DATA_READY = 1; } } void pl011_IRQHandler(uint8_t index) { fetch_all_from_fifo(active_uart[index]); // Clear the interrupt in case we weren't able to clear it by emptying the // FIFO. (This won't clear the FIFO.) ARM_UART_PL011_Type *pl011 = uart[index]; pl011->ICR = UART0_ICR_RXIC_Msk; } void UART0_IRQHandler(void) { pl011_IRQHandler(0); } #if BCM_VERSION == 2711 void UART2_IRQHandler(void) { pl011_IRQHandler(2); } void UART3_IRQHandler(void) { pl011_IRQHandler(3); } void UART4_IRQHandler(void) { pl011_IRQHandler(4); } void UART5_IRQHandler(void) { pl011_IRQHandler(5); } #endif void common_hal_busio_uart_never_reset(busio_uart_obj_t *self) { uart_status[self->uart_id] = STATUS_NEVER_RESET; common_hal_never_reset_pin(self->tx_pin); common_hal_never_reset_pin(self->rx_pin); common_hal_never_reset_pin(self->cts_pin); common_hal_never_reset_pin(self->rts_pin); } void common_hal_busio_uart_construct(busio_uart_obj_t *self, const mcu_pin_obj_t *tx, const mcu_pin_obj_t *rx, const mcu_pin_obj_t *rts, const mcu_pin_obj_t *cts, const mcu_pin_obj_t *rs485_dir, bool rs485_invert, uint32_t baudrate, uint8_t bits, busio_uart_parity_t parity, uint8_t stop, mp_float_t timeout, uint16_t receiver_buffer_size, byte *receiver_buffer, bool sigint_enabled) { mp_arg_validate_int_max(bits, 8, MP_QSTR_bits); mp_arg_validate_int_min(receiver_buffer_size, 1, MP_QSTR_receiver_buffer_size); if ((rs485_dir != NULL) || (rs485_invert)) { mp_raise_NotImplementedError(translate("RS485 Not yet supported on this device")); } size_t instance_index = NUM_UART; BP_Function_Enum tx_alt = 0; BP_Function_Enum rx_alt = 0; BP_Function_Enum rts_alt = 0; BP_Function_Enum cts_alt = 0; for (size_t i = 0; i < NUM_UART; i++) { if (uart_status[i] != STATUS_FREE) { continue; } if (tx != NULL) { if (!pin_find_alt(tx, PIN_FUNCTION_UART, i, UART_FUNCTION_TXD, &tx_alt)) { continue; } if (rts != NULL && !pin_find_alt(rts, PIN_FUNCTION_UART, i, UART_FUNCTION_RTS, &rts_alt)) { continue; } } if (rx != NULL) { if (!pin_find_alt(rx, PIN_FUNCTION_UART, i, UART_FUNCTION_RXD, &rx_alt)) { continue; } if (cts != NULL && !pin_find_alt(cts, PIN_FUNCTION_UART, i, UART_FUNCTION_CTS, &cts_alt)) { continue; } } instance_index = i; break; } if (instance_index == NUM_UART) { raise_ValueError_invalid_pins(); } self->rx_pin = rx; self->tx_pin = tx; self->rts_pin = rts; self->cts_pin = cts; self->sigint_enabled = sigint_enabled; if (rx != NULL) { // Use the provided buffer when given. if (receiver_buffer != NULL) { ringbuf_init(&self->ringbuf, receiver_buffer, receiver_buffer_size); } else { // Initially allocate the UART's buffer in the long-lived part of the // heap. UARTs are generally long-lived objects, but the "make long- // lived" machinery is incapable of moving internal pointers like // self->buffer, so do it manually. (However, as long as internal // pointers like this are NOT moved, allocating the buffer // in the long-lived pool is not strictly necessary) if (!ringbuf_alloc(&self->ringbuf, receiver_buffer_size, true)) { m_malloc_fail(receiver_buffer_size); } } } active_uart[self->uart_id] = self; ARM_UART_PL011_Type *pl011 = uart[self->uart_id]; if (self->uart_id == 1) { AUX->ENABLES_b.UART_1 = true; UART1->IER = 0; UART1->CNTL = 0; if (bits == 8) { UART1->LCR_b.DATA_SIZE = UART1_LCR_DATA_SIZE_MODE_8BIT; } else if (bits == 7) { UART1->LCR_b.DATA_SIZE = UART1_LCR_DATA_SIZE_MODE_7BIT; } UART1->MCR = 0; UART1->IER = 0; // Clear interrupts UART1->IIR = 0xff; common_hal_busio_uart_set_baudrate(self, baudrate); if (tx != NULL) { UART1->CNTL |= UART1_CNTL_TX_ENABLE_Msk; } if (rx != NULL) { UART1->CNTL |= UART1_CNTL_RX_ENABLE_Msk; } } else { // Ensure the UART is disabled as we configure it. pl011->CR_b.UARTEN = false; pl011->IMSC = 0; pl011->ICR = 0x3ff; common_hal_busio_uart_set_baudrate(self, baudrate); uint32_t line_control = UART0_LCR_H_FEN_Msk; line_control |= (bits - 5) << UART0_LCR_H_WLEN_Pos; if (stop == 2) { line_control |= UART0_LCR_H_STP2_Msk; } if (parity != BUSIO_UART_PARITY_NONE) { line_control |= UART0_LCR_H_PEN_Msk; } if (parity == BUSIO_UART_PARITY_EVEN) { line_control |= UART0_LCR_H_EPS_Msk; } pl011->LCR_H = line_control; uint32_t control = UART0_CR_UARTEN_Msk; if (tx != NULL) { control |= UART0_CR_TXE_Msk; } if (rx != NULL) { control |= UART0_CR_RXE_Msk; } if (cts != NULL) { control |= UART0_CR_CTSEN_Msk; } if (rts != NULL) { control |= UART0_CR_RTSEN_Msk; } pl011->CR = control; } // Setup the pins after waiting for UART stuff COMPLETE_MEMORY_READS; if (tx != NULL) { gpio_set_pull(tx->number, BP_PULL_NONE); gpio_set_function(tx->number, tx_alt); } if (rx != NULL) { gpio_set_pull(rx->number, BP_PULL_NONE); gpio_set_function(rx->number, rx_alt); } if (rts != NULL) { gpio_set_pull(rts->number, BP_PULL_NONE); gpio_set_function(rts->number, rts_alt); } if (cts != NULL) { gpio_set_pull(cts->number, BP_PULL_NONE); gpio_set_function(cts->number, cts_alt); } // Turn on interrupts COMPLETE_MEMORY_READS; if (self->uart_id == 1) { UART1->IER_b.DATA_READY = true; // Never disable this in case the SPIs are used. They can each be // disabled at the peripheral itself. BP_EnableIRQ(AUX_IRQn); } else { pl011->IMSC_b.RXIM = true; // Never disable this in case the other PL011 UARTs are used. BP_EnableIRQ(UART_IRQn); } } bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) { return self->tx_pin == NULL && self->rx_pin == NULL; } void common_hal_busio_uart_deinit(busio_uart_obj_t *self) { if (common_hal_busio_uart_deinited(self)) { return; } if (self->uart_id == 1) { UART1->IER_b.DATA_READY = false; UART1->CNTL = 0; AUX->ENABLES_b.UART_1 = false; } else { ARM_UART_PL011_Type *pl011 = uart[self->uart_id]; pl011->CR = 0; } active_uart[self->uart_id] = NULL; ringbuf_deinit(&self->ringbuf); uart_status[self->uart_id] = STATUS_FREE; common_hal_reset_pin(self->tx_pin); common_hal_reset_pin(self->rx_pin); common_hal_reset_pin(self->cts_pin); common_hal_reset_pin(self->rts_pin); self->tx_pin = NULL; self->rx_pin = NULL; self->cts_pin = NULL; self->rts_pin = NULL; } // Write characters. size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) { if (self->tx_pin == NULL) { mp_raise_ValueError(translate("No TX pin")); } COMPLETE_MEMORY_READS; ARM_UART_PL011_Type *pl011 = uart[self->uart_id]; for (size_t i = 0; i < len; i++) { if (self->uart_id == 1) { // Wait for the FIFO to have space. while (!UART1->STAT_b.TX_READY) { RUN_BACKGROUND_TASKS; } UART1->IO = data[i]; } else { while (pl011->FR_b.TXFF) { RUN_BACKGROUND_TASKS; } pl011->DR_b.DATA = data[i]; } } // Wait for the data to be shifted out if (self->uart_id == 1) { while (!UART1->STAT_b.TX_DONE) { RUN_BACKGROUND_TASKS; } } else { while (pl011->FR_b.BUSY) { RUN_BACKGROUND_TASKS; } } COMPLETE_MEMORY_READS; return len; } STATIC void disable_interrupt(busio_uart_obj_t *self) { if (self->uart_id == 1) { UART1->IER_b.DATA_READY = false; } } STATIC void enable_interrupt(busio_uart_obj_t *self) { if (self->uart_id == 1) { UART1->IER_b.DATA_READY = true; } } // Read characters. size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) { if (self->rx_pin == NULL) { mp_raise_ValueError(translate("No RX pin")); } if (len == 0) { // Nothing to read. return 0; } COMPLETE_MEMORY_READS; // Prevent conflict with uart irq. disable_interrupt(self); // Copy as much received data as available, up to len bytes. size_t total_read = ringbuf_get_n(&self->ringbuf, data, len); // Check if we still need to read more data. if (len > total_read) { len -= total_read; uint64_t start_ticks = supervisor_ticks_ms64(); // Busy-wait until timeout or until we've read enough chars. while (len > 0 && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms)) { fetch_all_from_fifo(self); size_t additional_read = ringbuf_get_n(&self->ringbuf, data + total_read, len); len -= additional_read; total_read += additional_read; if (additional_read > 0) { // Reset the timeout on every character read. start_ticks = supervisor_ticks_ms64(); } RUN_BACKGROUND_TASKS; // Allow user to break out of a timeout with a KeyboardInterrupt. if (mp_hal_is_interrupted()) { break; } } } // Now that we've emptied the ringbuf some, fill it up with anything in the // FIFO. This ensures that we'll empty the FIFO as much as possible and // reset the interrupt when we catch up. fetch_all_from_fifo(self); // Re-enable irq. enable_interrupt(self); COMPLETE_MEMORY_READS; if (total_read == 0) { *errcode = EAGAIN; return MP_STREAM_ERROR; } return total_read; } uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) { return self->baudrate; } void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) { if (self->uart_id == 1) { uint32_t source_clock = vcmailbox_get_clock_rate(VCMAILBOX_CLOCK_CORE); UART1->BAUD = ((source_clock / (baudrate * 8)) - 1); } else { ARM_UART_PL011_Type *pl011 = uart[self->uart_id]; bool reenable = false; if (pl011->CR_b.UARTEN) { pl011->CR_b.UARTEN = false; reenable = true; } uint32_t source_clock = vcmailbox_get_clock_rate_measured(VCMAILBOX_CLOCK_UART); uint32_t divisor = 16 * baudrate; pl011->IBRD = source_clock / divisor; // The fractional divisor is 64ths. uint32_t remainder = source_clock % divisor; uint32_t per_tick = (divisor / 64) + 1; uint32_t adjust = 0; if (remainder % per_tick > 0) { adjust = 1; } pl011->FBRD = remainder / per_tick + adjust; if (reenable) { pl011->CR_b.UARTEN = true; } } self->baudrate = baudrate; } mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) { return (mp_float_t)(self->timeout_ms / 1000.0L); } void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) { self->timeout_ms = timeout * 1000; } uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) { fetch_all_from_fifo(self); return ringbuf_num_filled(&self->ringbuf); } void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) { ringbuf_clear(&self->ringbuf); } bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) { if (self->tx_pin == NULL) { return false; } if (self->uart_id == 1) { return UART1->STAT_b.TX_READY; } return !uart[self->uart_id]->FR_b.TXFF; }