/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016, 2017 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "supervisor/spi_flash_api.h" #include #include #include "mpconfigboard.h" // for EXTERNAL_FLASH_QSPI_DUAL #include "supervisor/shared/external_flash/common_commands.h" #include "supervisor/shared/external_flash/qspi_flash.h" #include "samd/cache.h" #include "samd/dma.h" #include "atmel_start_pins.h" #include "hal_gpio.h" bool spi_flash_command(uint8_t command) { QSPI->INSTRCTRL.bit.INSTR = command; QSPI->INSTRFRAME.reg = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS | QSPI_INSTRFRAME_TFRTYPE_READ | QSPI_INSTRFRAME_INSTREN; QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER; while( !QSPI->INTFLAG.bit.INSTREND ); QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND; return true; } bool spi_flash_read_command(uint8_t command, uint8_t* response, uint32_t length) { samd_peripherals_disable_and_clear_cache(); QSPI->INSTRCTRL.bit.INSTR = command; QSPI->INSTRFRAME.reg = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS | QSPI_INSTRFRAME_TFRTYPE_READ | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_DATAEN; // Dummy read of INSTRFRAME needed to synchronize. // See Instruction Transmission Flow Diagram, figure 37.9, page 995 // and Example 4, page 998, section 37.6.8.5. (volatile uint32_t) QSPI->INSTRFRAME.reg; memcpy(response, (uint8_t *) QSPI_AHB, length); QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER; while( !QSPI->INTFLAG.bit.INSTREND ); QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND; samd_peripherals_enable_cache(); return true; } bool spi_flash_write_command(uint8_t command, uint8_t* data, uint32_t length) { samd_peripherals_disable_and_clear_cache(); QSPI->INSTRCTRL.bit.INSTR = command; QSPI->INSTRFRAME.reg = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS | QSPI_INSTRFRAME_TFRTYPE_WRITE | QSPI_INSTRFRAME_INSTREN | (data != NULL ? QSPI_INSTRFRAME_DATAEN : 0); // Dummy read of INSTRFRAME needed to synchronize. // See Instruction Transmission Flow Diagram, figure 37.9, page 995 // and Example 4, page 998, section 37.6.8.5. (volatile uint32_t) QSPI->INSTRFRAME.reg; if (data != NULL) { memcpy((uint8_t *) QSPI_AHB, data, length); } QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER; while( !QSPI->INTFLAG.bit.INSTREND ); QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND; samd_peripherals_enable_cache(); return true; } bool spi_flash_sector_command(uint8_t command, uint32_t address) { QSPI->INSTRCTRL.bit.INSTR = command; QSPI->INSTRADDR.bit.ADDR = address; QSPI->INSTRFRAME.reg = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS | QSPI_INSTRFRAME_TFRTYPE_WRITE | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN; QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER; while( !QSPI->INTFLAG.bit.INSTREND ); QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND; return true; } bool spi_flash_write_data(uint32_t address, uint8_t* data, uint32_t length) { samd_peripherals_disable_and_clear_cache(); QSPI->INSTRCTRL.bit.INSTR = CMD_PAGE_PROGRAM; uint32_t mode = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI; QSPI->INSTRFRAME.reg = mode | QSPI_INSTRFRAME_ADDRLEN_24BITS | QSPI_INSTRFRAME_TFRTYPE_WRITEMEMORY | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN | QSPI_INSTRFRAME_DATAEN; memcpy(((uint8_t *) QSPI_AHB) + address, data, length); // TODO(tannewt): Fix DMA and enable it. // qspi_dma_write(address, data, length); QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER; while( !QSPI->INTFLAG.bit.INSTREND ); QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND; samd_peripherals_enable_cache(); return true; } bool spi_flash_read_data(uint32_t address, uint8_t* data, uint32_t length) { samd_peripherals_disable_and_clear_cache(); #ifdef EXTERNAL_FLASH_QSPI_SINGLE QSPI->INSTRCTRL.bit.INSTR = CMD_READ_DATA; uint32_t mode = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI; #elif defined(EXTERNAL_FLASH_QSPI_DUAL) QSPI->INSTRCTRL.bit.INSTR = CMD_DUAL_READ; uint32_t mode = QSPI_INSTRFRAME_WIDTH_DUAL_OUTPUT; #else QSPI->INSTRCTRL.bit.INSTR = CMD_QUAD_READ; uint32_t mode = QSPI_INSTRFRAME_WIDTH_QUAD_OUTPUT; #endif #ifdef EXTERNAL_FLASH_QSPI_SINGLE QSPI->INSTRFRAME.reg = mode | QSPI_INSTRFRAME_ADDRLEN_24BITS | QSPI_INSTRFRAME_TFRTYPE_READMEMORY | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN | QSPI_INSTRFRAME_DATAEN | QSPI_INSTRFRAME_DUMMYLEN(0); #else QSPI->INSTRFRAME.reg = mode | QSPI_INSTRFRAME_ADDRLEN_24BITS | QSPI_INSTRFRAME_TFRTYPE_READMEMORY | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN | QSPI_INSTRFRAME_DATAEN | QSPI_INSTRFRAME_DUMMYLEN(8); #endif memcpy(data, ((uint8_t *) QSPI_AHB) + address, length); // TODO(tannewt): Fix DMA and enable it. // qspi_dma_read(address, data, length); QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER; while( !QSPI->INTFLAG.bit.INSTREND ); QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND; samd_peripherals_enable_cache(); return true; } void spi_flash_init(void) { MCLK->APBCMASK.bit.QSPI_ = true; MCLK->AHBMASK.bit.QSPI_ = true; MCLK->AHBMASK.bit.QSPI_2X_ = false; // Only true if we are doing DDR. QSPI->CTRLA.reg = QSPI_CTRLA_SWRST; // We don't need to wait because we're running as fast as the CPU. // Slow, good for debugging with Saleae // QSPI->BAUD.bit.BAUD = 32; // Super fast, may be unreliable when Saleae is connected to high speed lines. QSPI->BAUD.bit.BAUD = 2; QSPI->CTRLB.reg = QSPI_CTRLB_MODE_MEMORY | // Serial memory mode (map to QSPI_AHB) QSPI_CTRLB_DATALEN_8BITS | QSPI_CTRLB_CSMODE_LASTXFER; QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE; // The QSPI is only connected to one set of pins in the SAMD51 so we can hard code it. uint32_t pins[6] = {PIN_PA08, PIN_PA09, PIN_PA10, PIN_PA11, PIN_PB10, PIN_PB11}; for (uint8_t i = 0; i < 6; i++) { gpio_set_pin_direction(pins[i], GPIO_DIRECTION_IN); gpio_set_pin_pull_mode(pins[i], GPIO_PULL_OFF); gpio_set_pin_function(pins[i], GPIO_PIN_FUNCTION_H); } } void spi_flash_init_device(const external_flash_device* device) { check_quad_enable(device); // TODO(tannewt): Adjust the speed for the found device. }