/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2023 Jeff Epler for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "shared-module/synthio/Note.h" #include "shared-bindings/synthio/Note.h" #include "shared-bindings/synthio/__init__.h" mp_float_t common_hal_synthio_note_get_frequency(synthio_note_obj_t *self) { return self->frequency; } void common_hal_synthio_note_set_frequency(synthio_note_obj_t *self, mp_float_t value_in) { mp_float_t val = mp_arg_validate_float_range(value_in, 0, 32767, MP_QSTR_frequency); self->frequency = val; self->frequency_scaled = synthio_frequency_convert_float_to_scaled(val); } mp_obj_t common_hal_synthio_note_get_filter_obj(synthio_note_obj_t *self) { return self->filter_obj; } void common_hal_synthio_note_set_filter(synthio_note_obj_t *self, mp_obj_t filter_in) { synthio_biquad_filter_assign(&self->filter_state, filter_in); self->filter_obj = filter_in; } mp_float_t common_hal_synthio_note_get_ring_frequency(synthio_note_obj_t *self) { return self->ring_frequency; } void common_hal_synthio_note_set_ring_frequency(synthio_note_obj_t *self, mp_float_t value_in) { mp_float_t val = mp_arg_validate_float_range(value_in, 0, 32767, MP_QSTR_ring_frequency); self->ring_frequency = val; self->ring_frequency_scaled = synthio_frequency_convert_float_to_scaled(val); } mp_obj_t common_hal_synthio_note_get_panning(synthio_note_obj_t *self) { return self->panning.obj; } void common_hal_synthio_note_set_panning(synthio_note_obj_t *self, mp_obj_t value_in) { synthio_block_assign_slot(value_in, &self->panning, MP_QSTR_panning); } mp_obj_t common_hal_synthio_note_get_amplitude(synthio_note_obj_t *self) { return self->amplitude.obj; } void common_hal_synthio_note_set_amplitude(synthio_note_obj_t *self, mp_obj_t value_in) { synthio_block_assign_slot(value_in, &self->amplitude, MP_QSTR_amplitude); } mp_obj_t common_hal_synthio_note_get_bend(synthio_note_obj_t *self) { return self->bend.obj; } void common_hal_synthio_note_set_bend(synthio_note_obj_t *self, mp_obj_t value_in) { synthio_block_assign_slot(value_in, &self->bend, MP_QSTR_bend); } mp_obj_t common_hal_synthio_note_get_ring_bend(synthio_note_obj_t *self) { return self->ring_bend.obj; } void common_hal_synthio_note_set_ring_bend(synthio_note_obj_t *self, mp_obj_t value_in) { synthio_block_assign_slot(value_in, &self->ring_bend, MP_QSTR_ring_bend); } mp_obj_t common_hal_synthio_note_get_envelope_obj(synthio_note_obj_t *self) { return self->envelope_obj; } void common_hal_synthio_note_set_envelope(synthio_note_obj_t *self, mp_obj_t envelope_in) { if (envelope_in != mp_const_none) { mp_arg_validate_type(envelope_in, (mp_obj_type_t *)&synthio_envelope_type_obj, MP_QSTR_envelope); if (self->sample_rate != 0) { synthio_envelope_definition_set(&self->envelope_def, envelope_in, self->sample_rate); } } self->envelope_obj = envelope_in; } mp_obj_t common_hal_synthio_note_get_waveform_obj(synthio_note_obj_t *self) { return self->waveform_obj; } void common_hal_synthio_note_set_waveform(synthio_note_obj_t *self, mp_obj_t waveform_in) { if (waveform_in == mp_const_none) { memset(&self->waveform_buf, 0, sizeof(self->waveform_buf)); } else { mp_buffer_info_t bufinfo_waveform; synthio_synth_parse_waveform(&bufinfo_waveform, waveform_in); self->waveform_buf = bufinfo_waveform; } self->waveform_obj = waveform_in; } mp_int_t common_hal_synthio_note_get_waveform_loop_start(synthio_note_obj_t *self) { return self->waveform_loop_start; } void common_hal_synthio_note_set_waveform_loop_start(synthio_note_obj_t *self, mp_int_t value_in) { mp_int_t val = mp_arg_validate_int_range(value_in, 0, SYNTHIO_WAVEFORM_SIZE - 1, MP_QSTR_waveform_loop_start); self->waveform_loop_start = val; } mp_int_t common_hal_synthio_note_get_waveform_loop_end(synthio_note_obj_t *self) { return self->waveform_loop_end; } void common_hal_synthio_note_set_waveform_loop_end(synthio_note_obj_t *self, mp_int_t value_in) { mp_int_t val = mp_arg_validate_int_range(value_in, 1, SYNTHIO_WAVEFORM_SIZE, MP_QSTR_waveform_loop_end); self->waveform_loop_end = val; } mp_obj_t common_hal_synthio_note_get_ring_waveform_obj(synthio_note_obj_t *self) { return self->ring_waveform_obj; } void common_hal_synthio_note_set_ring_waveform(synthio_note_obj_t *self, mp_obj_t ring_waveform_in) { if (ring_waveform_in == mp_const_none) { memset(&self->ring_waveform_buf, 0, sizeof(self->ring_waveform_buf)); } else { mp_buffer_info_t bufinfo_ring_waveform; synthio_synth_parse_waveform(&bufinfo_ring_waveform, ring_waveform_in); self->ring_waveform_buf = bufinfo_ring_waveform; } self->ring_waveform_obj = ring_waveform_in; } mp_int_t common_hal_synthio_note_get_ring_waveform_loop_start(synthio_note_obj_t *self) { return self->ring_waveform_loop_start; } void common_hal_synthio_note_set_ring_waveform_loop_start(synthio_note_obj_t *self, mp_int_t value_in) { mp_int_t val = mp_arg_validate_int_range(value_in, 0, SYNTHIO_WAVEFORM_SIZE - 1, MP_QSTR_ring_waveform_loop_start); self->ring_waveform_loop_start = val; } mp_int_t common_hal_synthio_note_get_ring_waveform_loop_end(synthio_note_obj_t *self) { return self->ring_waveform_loop_end; } void common_hal_synthio_note_set_ring_waveform_loop_end(synthio_note_obj_t *self, mp_int_t value_in) { mp_int_t val = mp_arg_validate_int_range(value_in, 1, SYNTHIO_WAVEFORM_SIZE, MP_QSTR_ring_waveform_loop_end); self->ring_waveform_loop_end = val; } void synthio_note_recalculate(synthio_note_obj_t *self, int32_t sample_rate) { if (sample_rate == self->sample_rate) { return; } self->sample_rate = sample_rate; if (self->envelope_obj != mp_const_none) { synthio_envelope_definition_set(&self->envelope_def, self->envelope_obj, sample_rate); } } void synthio_note_start(synthio_note_obj_t *self, int32_t sample_rate) { synthio_note_recalculate(self, sample_rate); synthio_biquad_filter_reset(&self->filter_state); } // Perform a pitch bend operation // // bend_value is in the range [0, 65535]. "no change" is 32768. The bend unit is 32768/octave. // // compare to (frequency_scaled * pow(2, (bend_value-32768)/32768)) // a 13-entry pitch table #define BEND_SCALE (32768) #define BEND_OFFSET (BEND_SCALE) STATIC uint16_t pitch_bend_table[] = { 0, 1948, 4013, 6200, 8517, 10972, 13573, 16329, 19248, 22341, 25618, 29090, 32768 }; STATIC uint32_t pitch_bend(uint32_t frequency_scaled, int32_t bend_value) { int octave = bend_value >> 15; bend_value &= 0x7fff; uint32_t bend_value_semitone = (uint32_t)bend_value * 24; // 65536/semitone uint32_t semitone = bend_value_semitone >> 16; uint32_t fractone = bend_value_semitone & 0xffff; uint32_t f_lo = pitch_bend_table[semitone]; uint32_t f_hi = pitch_bend_table[semitone + 1]; // table has 13 entries, indexing with semitone=12 is OK uint32_t f = ((f_lo * (65535 - fractone) + f_hi * fractone) >> 16) + BEND_OFFSET; return (frequency_scaled * (uint64_t)f) >> (15 - octave); } #define ZERO MICROPY_FLOAT_CONST(0.) #define ONE MICROPY_FLOAT_CONST(1.) #define ALMOST_ONE (MICROPY_FLOAT_CONST(32767.) / 32768) uint32_t synthio_note_step(synthio_note_obj_t *self, int32_t sample_rate, int16_t dur, int16_t loudness[2]) { int panning = synthio_block_slot_get_scaled(&self->panning, -ALMOST_ONE, ALMOST_ONE); int left_panning_scaled, right_panning_scaled; if (panning >= 0) { left_panning_scaled = 32768; right_panning_scaled = 32767 - panning; } else { right_panning_scaled = 32768; left_panning_scaled = 32767 + panning; } int amplitude = synthio_block_slot_get_scaled(&self->amplitude, -ALMOST_ONE, ALMOST_ONE); left_panning_scaled = (left_panning_scaled * amplitude) >> 15; right_panning_scaled = (right_panning_scaled * amplitude) >> 15; loudness[0] = (loudness[0] * left_panning_scaled) >> 15; loudness[1] = (loudness[1] * right_panning_scaled) >> 15; if (self->ring_frequency_scaled != 0) { int ring_bend_value = synthio_block_slot_get_scaled(&self->ring_bend, -12, 12); self->ring_frequency_bent = pitch_bend(self->ring_frequency_scaled, ring_bend_value); } int bend_value = synthio_block_slot_get_scaled(&self->bend, -12, 12); uint32_t frequency_scaled = pitch_bend(self->frequency_scaled, bend_value); return frequency_scaled; }