/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared_dma.h" #include #include "py/gc.h" #include "py/mpstate.h" #include "hal/utils/include/utils.h" #include "shared-bindings/microcontroller/__init__.h" // We allocate three DMA resources for the entire lifecycle of the board (not the // vm) because the general_dma resource will be shared between the REPL and SPI // flash. Both uses must block each other in order to prevent conflict. COMPILER_ALIGNED(16) static DmacDescriptor dma_descriptors[3]; // Don't use these directly. They are used by the DMA engine itself. COMPILER_ALIGNED(16) static DmacDescriptor write_back_descriptors[3]; #define AUDIO_DMA_CHANNEL 0 #define SHARED_TX_CHANNEL 1 #define SHARED_RX_CHANNEL 2 #ifdef SAMD21 #define FIRST_SERCOM_RX_TRIGSRC 0x01 #define FIRST_SERCOM_TX_TRIGSRC 0x02 #endif #ifdef SAMD51 #define FIRST_SERCOM_RX_TRIGSRC 0x04 #define FIRST_SERCOM_TX_TRIGSRC 0x05 #endif // static void dma_configure_audio(uint8_t channel) { // system_interrupt_enter_critical_section(); // /** Select the DMA channel and clear software trigger */ // DMAC->CHID.reg = DMAC_CHID_ID(channel); // DMAC->CHCTRLA.reg &= ~DMAC_CHCTRLA_ENABLE; // DMAC->CHCTRLA.reg = DMAC_CHCTRLA_SWRST; // DMAC->SWTRIGCTRL.reg &= (uint32_t)(~(1 << channel)); // uint32_t event_output_enable = 0; // if (output_event) { // event_output_enable = DMAC_CHCTRLB_EVOE; // } // DMAC->CHCTRLB.reg = DMAC_CHCTRLB_LVL(DMA_PRIORITY_LEVEL_0) | // DMAC_CHCTRLB_TRIGSRC(trigsrc) | // DMAC_CHCTRLB_TRIGACT(DMA_TRIGGER_ACTION_BEAT) | // event_output_enable; // // config.peripheral_trigger = DAC_DMAC_ID_EMPTY; // // config.trigger_action = DMA_TRIGGER_ACTION_BEAT; // // config.event_config.input_action = DMA_EVENT_INPUT_TRIG; // // config.event_config.event_output_enable = true; // system_interrupt_leave_critical_section(); // } void init_shared_dma(void) { // Turn on the clocks #ifdef SAMD51 MCLK->AHBMASK.reg |= MCLK_AHBMASK_DMAC; #endif #ifdef SAMD21 PM->AHBMASK.reg |= PM_AHBMASK_DMAC; PM->APBBMASK.reg |= PM_APBBMASK_DMAC; #endif DMAC->CTRL.reg = DMAC_CTRL_SWRST; DMAC->BASEADDR.reg = (uint32_t) dma_descriptors; DMAC->WRBADDR.reg = (uint32_t) write_back_descriptors; DMAC->CTRL.reg = DMAC_CTRL_DMAENABLE | DMAC_CTRL_LVLEN0; // This allocates the lowest channel first so make sure the audio is first // so it gets the highest priority. // dma_configure_audio(0); } static uint8_t sercom_index(Sercom* sercom) { #ifdef SAMD21 return ((uint32_t) sercom - (uint32_t) SERCOM0) / 0x400; #else const Sercom* sercoms[SERCOM_INST_NUM] = SERCOM_INSTS; for (uint8_t i = 0; i < SERCOM_INST_NUM; i++) { if (sercoms[i] == sercom) { return i; } } return 0; #endif } static void dma_configure(uint8_t channel_number, uint8_t trigsrc, bool output_event) { #ifdef SAMD21 common_hal_mcu_disable_interrupts(); /** Select the DMA channel and clear software trigger */ DMAC->CHID.reg = DMAC_CHID_ID(channel_number); DMAC->CHCTRLA.reg &= ~DMAC_CHCTRLA_ENABLE; DMAC->CHCTRLA.reg = DMAC_CHCTRLA_SWRST; DMAC->SWTRIGCTRL.reg &= (uint32_t)(~(1 << channel_number)); uint32_t event_output_enable = 0; if (output_event) { event_output_enable = DMAC_CHCTRLB_EVOE; } DMAC->CHCTRLB.reg = DMAC_CHCTRLB_LVL_LVL0 | DMAC_CHCTRLB_TRIGSRC(trigsrc) | DMAC_CHCTRLB_TRIGACT_BEAT | event_output_enable; common_hal_mcu_enable_interrupts(); #endif #ifdef SAMD51 DmacChannel* channel = &DMAC->Channel[channel_number]; channel->CHCTRLA.reg &= ~DMAC_CHCTRLA_ENABLE; channel->CHCTRLA.reg = DMAC_CHCTRLA_SWRST; if (output_event) { channel->CHEVCTRL.reg = DMAC_CHEVCTRL_EVOE; } channel->CHCTRLA.reg = DMAC_CHCTRLA_TRIGSRC(trigsrc) | DMAC_CHCTRLA_TRIGACT_BURST | DMAC_CHCTRLA_BURSTLEN_SINGLE; #endif } static void enable_channel(uint8_t channel_number) { #ifdef SAMD21 common_hal_mcu_disable_interrupts(); /** Select the DMA channel and clear software trigger */ DMAC->CHID.reg = DMAC_CHID_ID(channel_number); DMAC->CHCTRLA.bit.ENABLE = true; common_hal_mcu_enable_interrupts(); #endif #ifdef SAMD51 DmacChannel* channel = &DMAC->Channel[channel_number]; channel->CHCTRLA.bit.ENABLE = true; #endif } static uint8_t transfer_status(uint8_t channel_number) { #ifdef SAMD21 common_hal_mcu_disable_interrupts(); /** Select the DMA channel and clear software trigger */ DMAC->CHID.reg = DMAC_CHID_ID(channel_number); uint8_t status = DMAC->CHINTFLAG.reg; common_hal_mcu_enable_interrupts(); return status; #endif #ifdef SAMD51 DmacChannel* channel = &DMAC->Channel[channel_number]; return channel->CHINTFLAG.reg; #endif } static bool channel_free(uint8_t channel_number) { #ifdef SAMD21 common_hal_mcu_disable_interrupts(); /** Select the DMA channel and clear software trigger */ DMAC->CHID.reg = DMAC_CHID_ID(channel_number); bool channel_free = DMAC->CHSTATUS.reg == 0; common_hal_mcu_enable_interrupts(); return channel_free; #endif #ifdef SAMD51 DmacChannel* channel = &DMAC->Channel[channel_number]; return channel->CHSTATUS.reg == 0; #endif } // Do write and read simultaneously. If buffer_out is NULL, write the tx byte over and over. // If buffer_out is a real buffer, ignore tx. // DMAs buffer_out -> dest // DMAs src -> buffer_in static int32_t shared_dma_transfer(void* peripheral, const uint8_t* buffer_out, volatile uint32_t* dest, volatile uint32_t* src, uint8_t* buffer_in, uint32_t length, uint8_t tx) { if (!channel_free(SHARED_TX_CHANNEL) || (buffer_in != NULL && !channel_free(SHARED_RX_CHANNEL))) { return -1; } uint32_t beat_size = DMAC_BTCTRL_BEATSIZE_BYTE; bool sercom = true; bool tx_active = false; bool rx_active = false; uint16_t beat_length = length; #ifdef SAMD51 if (peripheral == QSPI) { // Check input alignment on word boundaries. if ((((uint32_t) buffer_in) & 0x3) != 0 || (((uint32_t) buffer_out) & 0x3) != 0) { return -3; } beat_size = DMAC_BTCTRL_BEATSIZE_WORD | DMAC_BTCTRL_SRCINC | DMAC_BTCTRL_DSTINC; beat_length /= 4; sercom = false; if (buffer_out != NULL) { dma_configure(SHARED_TX_CHANNEL, QSPI_DMAC_ID_TX, false); tx_active = true; } else { dma_configure(SHARED_RX_CHANNEL, QSPI_DMAC_ID_RX, false); rx_active = true; } } else { #endif // sercom index is incorrect for SAMD51 dma_configure(SHARED_TX_CHANNEL, sercom_index(peripheral) * 2 + FIRST_SERCOM_TX_TRIGSRC, false); tx_active = true; if (buffer_in != NULL) { dma_configure(SHARED_RX_CHANNEL, sercom_index(peripheral) * 2 + FIRST_SERCOM_RX_TRIGSRC, false); rx_active = true; } #ifdef SAMD51 } #endif // Set up RX first. if (rx_active) { DmacDescriptor* rx_descriptor = &dma_descriptors[SHARED_RX_CHANNEL]; rx_descriptor->BTCTRL.reg = beat_size | DMAC_BTCTRL_DSTINC; rx_descriptor->BTCNT.reg = beat_length; rx_descriptor->SRCADDR.reg = ((uint32_t) src); #ifdef SAMD51 if (peripheral == QSPI) { rx_descriptor->SRCADDR.reg = ((uint32_t) src + length); } #endif rx_descriptor->DSTADDR.reg = ((uint32_t)buffer_in + length); rx_descriptor->BTCTRL.bit.VALID = true; } // Set up TX second. if (tx_active) { DmacDescriptor* tx_descriptor = &dma_descriptors[SHARED_TX_CHANNEL]; tx_descriptor->BTCTRL.reg = beat_size; tx_descriptor->BTCNT.reg = beat_length; if (buffer_out != NULL) { tx_descriptor->SRCADDR.reg = ((uint32_t)buffer_out + length); tx_descriptor->BTCTRL.reg |= DMAC_BTCTRL_SRCINC; } else { tx_descriptor->SRCADDR.reg = ((uint32_t) &tx); } tx_descriptor->DSTADDR.reg = ((uint32_t) dest); tx_descriptor->BTCTRL.bit.VALID = true; } if (sercom) { SercomSpi *s = &((Sercom*) peripheral)->SPI; s->INTFLAG.reg = SERCOM_SPI_INTFLAG_RXC | SERCOM_SPI_INTFLAG_DRE; } else { //QSPI->INTFLAG.reg = QSPI_INTFLAG_RXC | QSPI_INTFLAG_DRE; } // Start the RX job first so we don't miss the first byte. The TX job clocks // the output. if (rx_active) { enable_channel(SHARED_RX_CHANNEL); } if (tx_active) { enable_channel(SHARED_TX_CHANNEL); } if (sercom) { //DMAC->SWTRIGCTRL.reg |= (1 << SHARED_TX_CHANNEL); } else { // Do a manual copy to trigger then DMA. We do 32-bit accesses to match the DMA. #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" if (rx_active) { //buffer_in[0] = *src; DMAC->SWTRIGCTRL.reg |= (1 << SHARED_RX_CHANNEL); } else { //*(uint32_t*)dest = ((uint32_t*) buffer_out)[0]; } #pragma GCC diagnostic pop } // Channels cycle between Suspend -> Pending -> Busy and back while transfering. So, we check // the channels transfer status for an error or completion. if (rx_active) { while ((transfer_status(SHARED_RX_CHANNEL) & 0x3) == 0) {} } if (tx_active) { while ((transfer_status(SHARED_TX_CHANNEL) & 0x3) == 0) {} } if (sercom) { Sercom* s = (Sercom*) peripheral; // Wait for the SPI transfer to complete. while (s->SPI.INTFLAG.bit.TXC == 0) {} // This transmit will cause the RX buffer overflow but we're OK with that. // So, read the garbage and clear the overflow flag. if (!rx_active) { while (s->SPI.INTFLAG.bit.RXC == 1) { s->SPI.DATA.reg; } s->SPI.STATUS.bit.BUFOVF = 1; s->SPI.INTFLAG.reg = SERCOM_SPI_INTFLAG_ERROR; } } if ((!rx_active || transfer_status(SHARED_RX_CHANNEL) == DMAC_CHINTFLAG_TCMPL) && (!tx_active || transfer_status(SHARED_TX_CHANNEL) == DMAC_CHINTFLAG_TCMPL)) { return length; } return -2; } int32_t sercom_dma_transfer(Sercom* sercom, const uint8_t* buffer_out, uint8_t* buffer_in, uint32_t length) { return shared_dma_transfer(sercom, buffer_out, &sercom->SPI.DATA.reg, &sercom->SPI.DATA.reg, buffer_in, length, 0); } int32_t sercom_dma_write(Sercom* sercom, const uint8_t* buffer, uint32_t length) { return shared_dma_transfer(sercom, buffer, &sercom->SPI.DATA.reg, NULL, NULL, length, 0); } int32_t sercom_dma_read(Sercom* sercom, uint8_t* buffer, uint32_t length, uint8_t tx) { return shared_dma_transfer(sercom, NULL, &sercom->SPI.DATA.reg, &sercom->SPI.DATA.reg, buffer, length, tx); } #ifdef SAMD51 int32_t qspi_dma_write(uint32_t address, const uint8_t* buffer, uint32_t length) { return shared_dma_transfer(QSPI, buffer, (uint32_t*) (QSPI_AHB + address), NULL, NULL, length, 0); } int32_t qspi_dma_read(uint32_t address, uint8_t* buffer, uint32_t length) { return shared_dma_transfer(QSPI, NULL, NULL, (uint32_t*) (QSPI_AHB + address), buffer, length, 0); } #endif bool allocate_block_counter() { // // Find a timer to count DMA block completions. // Tc *t = NULL; // Tc *tcs[TC_INST_NUM] = TC_INSTS; // for (uint8_t i = TC_INST_NUM; i > 0; i--) { // if (tcs[i - 1]->COUNT16.CTRLA.bit.ENABLE == 0) { // t = tcs[i - 1]; // break; // } // } // if (t == NULL) { // return false; // } // MP_STATE_VM(audiodma_block_counter) = gc_alloc(sizeof(struct tc_module), false); // if (MP_STATE_VM(audiodma_block_counter) == NULL) { // return false; // } // // // Don't bother setting the period. We set it before you playback anything. // struct tc_config config_tc; // tc_get_config_defaults(&config_tc); // config_tc.counter_size = TC_COUNTER_SIZE_16BIT; // config_tc.clock_prescaler = TC_CLOCK_PRESCALER_DIV1; // if (tc_init(MP_STATE_VM(audiodma_block_counter), t, &config_tc) != STATUS_OK) { // return false; // }; // // struct tc_events events_tc; // events_tc.generate_event_on_overflow = false; // events_tc.on_event_perform_action = true; // events_tc.event_action = TC_EVENT_ACTION_INCREMENT_COUNTER; // tc_enable_events(MP_STATE_VM(audiodma_block_counter), &events_tc); // // // Connect the timer overflow event, which happens at the target frequency, // // to the DAC conversion trigger. // MP_STATE_VM(audiodma_block_event) = gc_alloc(sizeof(struct events_resource), false); // if (MP_STATE_VM(audiodma_block_event) == NULL) { // return false; // } // struct events_config config; // events_get_config_defaults(&config); // // uint8_t user = EVSYS_ID_USER_TC3_EVU; // if (t == TC4) { // user = EVSYS_ID_USER_TC4_EVU; // } else if (t == TC5) { // user = EVSYS_ID_USER_TC5_EVU; // #ifdef TC6 // } else if (t == TC6) { // user = EVSYS_ID_USER_TC6_EVU; // #endif // #ifdef TC7 // } else if (t == TC7) { // user = EVSYS_ID_USER_TC7_EVU; // #endif // } // // config.generator = EVSYS_ID_GEN_DMAC_CH_0; // config.path = EVENTS_PATH_ASYNCHRONOUS; // if (events_allocate(MP_STATE_VM(audiodma_block_event), &config) != STATUS_OK || // events_attach_user(MP_STATE_VM(audiodma_block_event), user) != STATUS_OK) { // return false; // } // // tc_enable(MP_STATE_VM(audiodma_block_counter)); // tc_stop_counter(MP_STATE_VM(audiodma_block_counter)); return true; } void switch_audiodma_trigger(uint8_t trigger_dmac_id) { //dma_configure(audio_dma.channel_id, trigger_dmac_id, true); }