/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 Dan Halbert for Adafruit Industries * Copyright (c) 2018 Artur Pacholec * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "shared-bindings/busio/SPI.h" #include "py/mperrno.h" #include "py/runtime.h" #include "nrfx_spim.h" #include "nrf_gpio.h" // These are in order from highest available frequency to lowest (32MHz first, then 8MHz). STATIC spim_peripheral_t spim_peripherals[] = { #if NRFX_CHECK(NRFX_SPIM3_ENABLED) // SPIM3 exists only on nRF52840 and supports 32MHz max. All other SPIM's are only 8MHz max. // Allocate SPIM3 first. { .spim = NRFX_SPIM_INSTANCE(3), .max_frequency = 32000000, .max_xfer_size = MIN(SPIM3_BUFFER_SIZE, (1UL << SPIM3_EASYDMA_MAXCNT_SIZE) - 1) }, #endif #if NRFX_CHECK(NRFX_SPIM2_ENABLED) // SPIM2 is not shared with a TWIM, so allocate before the shared ones. { .spim = NRFX_SPIM_INSTANCE(2), .max_frequency = 8000000, .max_xfer_size = (1UL << SPIM2_EASYDMA_MAXCNT_SIZE) - 1 }, #endif #if NRFX_CHECK(NRFX_SPIM1_ENABLED) // SPIM1 and TWIM1 share an address. { .spim = NRFX_SPIM_INSTANCE(1), .max_frequency = 8000000, .max_xfer_size = (1UL << SPIM1_EASYDMA_MAXCNT_SIZE) - 1 }, #endif #if NRFX_CHECK(NRFX_SPIM0_ENABLED) // SPIM0 and TWIM0 share an address. { .spim = NRFX_SPIM_INSTANCE(0), .max_frequency = 8000000, .max_xfer_size = (1UL << SPIM0_EASYDMA_MAXCNT_SIZE) - 1 }, #endif }; STATIC bool never_reset[MP_ARRAY_SIZE(spim_peripherals)]; // Separate RAM area for SPIM3 transmit buffer to avoid SPIM3 hardware errata. // https://infocenter.nordicsemi.com/index.jsp?topic=%2Ferrata_nRF52840_Rev2%2FERR%2FnRF52840%2FRev2%2Flatest%2Fanomaly_840_198.html extern uint32_t _spim3_ram; STATIC uint8_t *spim3_transmit_buffer = (uint8_t *) &_spim3_ram; void spi_reset(void) { for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) { if (never_reset[i]) { continue; } nrfx_spim_uninit(&spim_peripherals[i].spim); } } void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) { for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) { if (self->spim_peripheral == &spim_peripherals[i]) { never_reset[i] = true; never_reset_pin_number(self->clock_pin_number); never_reset_pin_number(self->MOSI_pin_number); never_reset_pin_number(self->MISO_pin_number); break; } } } // Convert frequency to clock-speed-dependent value. Choose the next lower baudrate if in between // available baudrates. static nrf_spim_frequency_t baudrate_to_spim_frequency(const uint32_t baudrate) { static const struct { const uint32_t boundary; nrf_spim_frequency_t spim_frequency; } baudrate_map[] = { #ifdef SPIM_FREQUENCY_FREQUENCY_M32 { 32000000, NRF_SPIM_FREQ_32M }, #endif #ifdef SPIM_FREQUENCY_FREQUENCY_M16 { 16000000, NRF_SPIM_FREQ_16M }, #endif { 8000000, NRF_SPIM_FREQ_8M }, { 4000000, NRF_SPIM_FREQ_4M }, { 2000000, NRF_SPIM_FREQ_2M }, { 1000000, NRF_SPIM_FREQ_1M }, { 500000, NRF_SPIM_FREQ_500K }, { 250000, NRF_SPIM_FREQ_250K }, { 0, NRF_SPIM_FREQ_125K }, }; size_t i = 0; uint32_t boundary; do { boundary = baudrate_map[i].boundary; if (baudrate >= boundary) { return baudrate_map[i].spim_frequency; } i++; } while (boundary != 0); // Should not get here. return 0; } void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi, const mcu_pin_obj_t * miso) { // Find a free instance, with most desirable (highest freq and not shared) allocated first. self->spim_peripheral = NULL; for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) { if ((spim_peripherals[i].spim.p_reg->ENABLE & SPIM_ENABLE_ENABLE_Msk) == 0) { self->spim_peripheral = &spim_peripherals[i]; break; } } if (self->spim_peripheral == NULL) { mp_raise_ValueError(translate("All SPI peripherals are in use")); } nrfx_spim_config_t config = NRFX_SPIM_DEFAULT_CONFIG(NRFX_SPIM_PIN_NOT_USED, NRFX_SPIM_PIN_NOT_USED, NRFX_SPIM_PIN_NOT_USED, NRFX_SPIM_PIN_NOT_USED); config.frequency = baudrate_to_spim_frequency(self->spim_peripheral->max_frequency); config.sck_pin = clock->number; self->clock_pin_number = clock->number; claim_pin(clock); if (mosi != NULL) { config.mosi_pin = mosi->number; self->MOSI_pin_number = mosi->number; claim_pin(mosi); } else { self->MOSI_pin_number = NO_PIN; } if (miso != NULL) { config.miso_pin = miso->number; self->MISO_pin_number = mosi->number; claim_pin(miso); } else { self->MISO_pin_number = NO_PIN; } nrfx_err_t err = nrfx_spim_init(&self->spim_peripheral->spim, &config, NULL, NULL); if (err != NRFX_SUCCESS) { common_hal_busio_spi_deinit(self); mp_raise_OSError(MP_EIO); } } bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) { return self->clock_pin_number == NO_PIN; } void common_hal_busio_spi_deinit(busio_spi_obj_t *self) { if (common_hal_busio_spi_deinited(self)) return; nrfx_spim_uninit(&self->spim_peripheral->spim); reset_pin_number(self->clock_pin_number); reset_pin_number(self->MOSI_pin_number); reset_pin_number(self->MISO_pin_number); } bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) { // nrf52 does not support 16 bit if (bits != 8) { return false; } // Set desired frequency, rounding down, and don't go above available frequency for this SPIM. nrf_spim_frequency_set(self->spim_peripheral->spim.p_reg, baudrate_to_spim_frequency(MIN(baudrate, self->spim_peripheral->max_frequency))); nrf_spim_mode_t mode = NRF_SPIM_MODE_0; if (polarity) { mode = (phase) ? NRF_SPIM_MODE_3 : NRF_SPIM_MODE_2; } else { mode = (phase) ? NRF_SPIM_MODE_1 : NRF_SPIM_MODE_0; } nrf_spim_configure(self->spim_peripheral->spim.p_reg, mode, NRF_SPIM_BIT_ORDER_MSB_FIRST); return true; } bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) { bool grabbed_lock = false; // NRFX_CRITICAL_SECTION_ENTER(); if (!self->has_lock) { grabbed_lock = true; self->has_lock = true; } // NRFX_CRITICAL_SECTION_EXIT(); return grabbed_lock; } bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) { return self->has_lock; } void common_hal_busio_spi_unlock(busio_spi_obj_t *self) { self->has_lock = false; } bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size_t len) { const bool is_spim3 = self->spim_peripheral->spim.p_reg == NRF_SPIM3; uint8_t *next_chunk = (uint8_t *) data; while (len > 0) { size_t chunk_size = MIN(len, self->spim_peripheral->max_xfer_size); uint8_t *chunk = next_chunk; if (is_spim3) { // If SPIM3, copy into unused RAM block, and do DMA from there. memcpy(spim3_transmit_buffer, chunk, chunk_size); chunk = spim3_transmit_buffer; } const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(chunk, chunk_size); if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) { return false; } next_chunk += chunk_size; len -= chunk_size; } return true; } bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len, uint8_t write_value) { uint8_t *next_chunk = data; while (len > 0) { size_t chunk_size = MIN(len, self->spim_peripheral->max_xfer_size); const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_RX(next_chunk, chunk_size); if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) { return false; } next_chunk += chunk_size; len -= chunk_size; } return true; } bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) { const bool is_spim3 = self->spim_peripheral->spim.p_reg == NRF_SPIM3; uint8_t *next_chunk_out = data_out; uint8_t *next_chunk_in = data_in; while (len > 0) { uint8_t *chunk_out = next_chunk_out; size_t chunk_size = MIN(len, self->spim_peripheral->max_xfer_size); if (is_spim3) { // If SPIM3, copy into unused RAM block, and do DMA from there. memcpy(spim3_transmit_buffer, chunk_out, chunk_size); chunk_out = spim3_transmit_buffer; } const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_SINGLE_XFER(next_chunk_out, chunk_size, next_chunk_in, chunk_size); if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) { return false; } next_chunk_out += chunk_size; next_chunk_in += chunk_size; len -= chunk_size; } return true; } uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) { switch (self->spim_peripheral->spim.p_reg->FREQUENCY) { case NRF_SPIM_FREQ_125K: return 125000; case NRF_SPIM_FREQ_250K: return 250000; case NRF_SPIM_FREQ_500K: return 500000; case NRF_SPIM_FREQ_1M: return 1000000; case NRF_SPIM_FREQ_2M: return 2000000; case NRF_SPIM_FREQ_4M: return 4000000; case NRF_SPIM_FREQ_8M: return 8000000; #ifdef SPIM_FREQUENCY_FREQUENCY_M16 case NRF_SPIM_FREQ_16M: return 16000000; #endif #ifdef SPIM_FREQUENCY_FREQUENCY_M32 case NRF_SPIM_FREQ_32M: return 32000000; #endif default: return 0; } } uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) { return (self->spim_peripheral->spim.p_reg->CONFIG & SPIM_CONFIG_CPHA_Msk) >> SPIM_CONFIG_CPHA_Pos; } uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) { return (self->spim_peripheral->spim.p_reg->CONFIG & SPIM_CONFIG_CPOL_Msk) >> SPIM_CONFIG_CPOL_Pos; }