/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <stdio.h> #include <stdint.h> #include <string.h> #include <stddef.h> #include "py/nlr.h" #include "py/runtime.h" #include "py/gc.h" #include "py/mphal.h" #include "pin.h" #include "reg.h" #include "timer.h" typedef enum { CHANNEL_MODE_PWM_NORMAL, CHANNEL_MODE_PWM_INVERTED, CHANNEL_MODE_OC_TIMING, CHANNEL_MODE_OC_ACTIVE, CHANNEL_MODE_OC_INACTIVE, CHANNEL_MODE_OC_TOGGLE, // CHANNEL_MODE_OC_FORCED_ACTIVE, // CHANNEL_MODE_OC_FORCED_INACTIVE, CHANNEL_MODE_IC, } pyb_channel_mode; STATIC const struct { qstr name; uint32_t oc_mode; } channel_mode_info[] = { { MP_QSTR_PWM, FTM_OCMODE_PWM1 }, { MP_QSTR_PWM_INVERTED, FTM_OCMODE_PWM2 }, { MP_QSTR_OC_TIMING, FTM_OCMODE_TIMING }, { MP_QSTR_OC_ACTIVE, FTM_OCMODE_ACTIVE }, { MP_QSTR_OC_INACTIVE, FTM_OCMODE_INACTIVE }, { MP_QSTR_OC_TOGGLE, FTM_OCMODE_TOGGLE }, // { MP_QSTR_OC_FORCED_ACTIVE, FTM_OCMODE_FORCED_ACTIVE }, // { MP_QSTR_OC_FORCED_INACTIVE, FTM_OCMODE_FORCED_INACTIVE }, { MP_QSTR_IC, 0 }, }; struct _pyb_timer_obj_t; typedef struct _pyb_timer_channel_obj_t { mp_obj_base_t base; struct _pyb_timer_obj_t *timer; uint8_t channel; uint8_t mode; mp_obj_t callback; struct _pyb_timer_channel_obj_t *next; } pyb_timer_channel_obj_t; typedef struct _pyb_timer_obj_t { mp_obj_base_t base; uint8_t tim_id; uint8_t irqn; mp_obj_t callback; FTM_HandleTypeDef ftm; pyb_timer_channel_obj_t *channel; } pyb_timer_obj_t; // Used to do callbacks to Python code on interrupt STATIC pyb_timer_obj_t *pyb_timer_obj_all[3]; #define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(pyb_timer_obj_all) STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in); STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback); STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback); void timer_init0(void) { for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) { pyb_timer_obj_all[i] = NULL; } } // unregister all interrupt sources void timer_deinit(void) { for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) { pyb_timer_obj_t *tim = pyb_timer_obj_all[i]; if (tim != NULL) { pyb_timer_deinit(tim); } } } mp_uint_t get_prescaler_shift(mp_int_t prescaler) { mp_uint_t prescaler_shift; for (prescaler_shift = 0; prescaler_shift < 8; prescaler_shift++) { if (prescaler == (1 << prescaler_shift)) { return prescaler_shift; } } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "prescaler must be a power of 2 between 1 and 128, not %d", prescaler)); } /******************************************************************************/ /* Micro Python bindings */ STATIC const mp_obj_type_t pyb_timer_channel_type; // Helper function for determining the period used for calculating percent STATIC uint32_t compute_period(pyb_timer_obj_t *self) { // In center mode, compare == period corresponds to 100% // In edge mode, compare == (period + 1) corresponds to 100% FTM_TypeDef *FTMx = self->ftm.Instance; uint32_t period = (FTMx->MOD & 0xffff); if ((FTMx->SC & FTM_SC_CPWMS) == 0) { // Edge mode period++; } return period; } // Helper function to compute PWM value from timer period and percent value. // 'val' can be an int or a float between 0 and 100 (out of range values are // clamped). STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) { uint32_t cmp; if (0) { #if MICROPY_PY_BUILTINS_FLOAT } else if (MP_OBJ_IS_TYPE(percent_in, &mp_type_float)) { float percent = mp_obj_get_float(percent_in); if (percent <= 0.0) { cmp = 0; } else if (percent >= 100.0) { cmp = period; } else { cmp = percent / 100.0 * ((float)period); } #endif } else { mp_int_t percent = mp_obj_get_int(percent_in); if (percent <= 0) { cmp = 0; } else if (percent >= 100) { cmp = period; } else { cmp = ((uint32_t)percent * period) / 100; } } return cmp; } // Helper function to compute percentage from timer perion and PWM value. STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) { #if MICROPY_PY_BUILTINS_FLOAT float percent = (float)cmp * 100.0 / (float)period; if (cmp >= period) { percent = 100.0; } else { percent = (float)cmp * 100.0 / (float)period; } return mp_obj_new_float(percent); #else mp_int_t percent; if (cmp >= period) { percent = 100; } else { percent = cmp * 100 / period; } return mp_obj_new_int(percent); #endif } STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_timer_obj_t *self = self_in; if (self->ftm.State == HAL_FTM_STATE_RESET) { mp_printf(print, "Timer(%u)", self->tim_id); } else { mp_printf(print, "Timer(%u, prescaler=%u, period=%u, mode=%s)", self->tim_id, 1 << (self->ftm.Instance->SC & 7), self->ftm.Instance->MOD & 0xffff, self->ftm.Init.CounterMode == FTM_COUNTERMODE_UP ? "UP" : "CENTER"); } } /// \method init(*, freq, prescaler, period) /// Initialise the timer. Initialisation must be either by frequency (in Hz) /// or by prescaler and period: /// /// tim.init(freq=100) # set the timer to trigger at 100Hz /// tim.init(prescaler=83, period=999) # set the prescaler and period directly /// /// Keyword arguments: /// /// - `freq` - specifies the periodic frequency of the timer. You migh also /// view this as the frequency with which the timer goes through /// one complete cycle. /// /// - `prescaler` 1, 2, 4, 8 16 32, 64 or 128 - specifies the value to be loaded into the /// timer's prescaler. The timer clock source is divided by /// (`prescaler`) to arrive at the timer clock. /// /// - `period` [0-0xffff] - Specifies the value to be loaded into the timer's /// Modulo Register (MOD). This determines the period of the timer (i.e. /// when the counter cycles). The timer counter will roll-over after /// `period` timer clock cycles. In center mode, a compare register > 0x7fff /// doesn't seem to work properly, so keep this in mind. /// /// - `mode` can be one of: /// - `Timer.UP` - configures the timer to count from 0 to MOD (default) /// - `Timer.CENTER` - confgures the timer to count from 0 to MOD and /// then back down to 0. /// /// - `callback` - as per Timer.callback() /// /// You must either specify freq or both of period and prescaler. STATIC const mp_arg_t pyb_timer_init_args[] = { { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = FTM_COUNTERMODE_UP} }, { MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, }; #define PYB_TIMER_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_timer_init_args) STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { // parse args mp_arg_val_t vals[PYB_TIMER_INIT_NUM_ARGS]; mp_arg_parse_all(n_args, args, kw_args, PYB_TIMER_INIT_NUM_ARGS, pyb_timer_init_args, vals); FTM_HandleTypeDef *ftm = &self->ftm; // set the TIM configuration values FTM_Base_InitTypeDef *init = &ftm->Init; if (vals[0].u_int != 0xffffffff) { // set prescaler and period from frequency if (vals[0].u_int == 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't have 0 frequency")); } uint32_t period = MAX(1, F_BUS / vals[0].u_int); uint32_t prescaler_shift = 0; while (period > 0xffff && prescaler_shift < 7) { period >>= 1; prescaler_shift++; } if (period > 0xffff) { period = 0xffff; } init->PrescalerShift = prescaler_shift; init->Period = period; } else if (vals[1].u_int != 0xffffffff && vals[2].u_int != 0xffffffff) { // set prescaler and period directly init->PrescalerShift = get_prescaler_shift(vals[1].u_int); init->Period = vals[2].u_int; if (!IS_FTM_PERIOD(init->Period)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "period must be between 0 and 65535, not %d", init->Period)); } } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period")); } init->CounterMode = vals[3].u_int; if (!IS_FTM_COUNTERMODE(init->CounterMode)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "invalid counter mode: %d", init->CounterMode)); } // Currently core/mk20dx128.c sets SIM_SCGC6_FTM0, SIM_SCGC6_FTM1, SIM_SCGC3_FTM2 // so we don't need to do it here. NVIC_SET_PRIORITY(self->irqn, 0xe); // next-to lowest priority HAL_FTM_Base_Init(ftm); if (vals[4].u_obj == mp_const_none) { HAL_FTM_Base_Start(ftm); } else { pyb_timer_callback(self, vals[4].u_obj); } return mp_const_none; } /// \classmethod \constructor(id, ...) /// Construct a new timer object of the given id. If additional /// arguments are given, then the timer is initialised by `init(...)`. /// `id` can be 1 to 14, excluding 3. STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // create new Timer object pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t); memset(tim, 0, sizeof(*tim)); tim->base.type = &pyb_timer_type; tim->callback = mp_const_none; tim->channel = NULL; // get FTM number tim->tim_id = mp_obj_get_int(args[0]); switch (tim->tim_id) { case 0: tim->ftm.Instance = FTM0; tim->irqn = IRQ_FTM0; break; case 1: tim->ftm.Instance = FTM1; tim->irqn = IRQ_FTM1; break; case 2: tim->ftm.Instance = FTM2; tim->irqn = IRQ_FTM2; break; default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id)); } if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args); } // set the global variable for interrupt callbacks if (tim->tim_id < PYB_TIMER_OBJ_ALL_NUM) { pyb_timer_obj_all[tim->tim_id] = tim; } return (mp_obj_t)tim; } STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init); /// \method deinit() /// Deinitialises the timer. /// /// Disables the callback (and the associated irq). /// Disables any channel callbacks (and the associated irq). /// Stops the timer, and disables the timer peripheral. STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) { pyb_timer_obj_t *self = self_in; // Disable the base interrupt pyb_timer_callback(self_in, mp_const_none); pyb_timer_channel_obj_t *chan = self->channel; self->channel = NULL; // Disable the channel interrupts while (chan != NULL) { pyb_timer_channel_callback(chan, mp_const_none); pyb_timer_channel_obj_t *prev_chan = chan; chan = chan->next; prev_chan->next = NULL; } HAL_FTM_Base_DeInit(&self->ftm); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit); /// \method channel(channel, mode, ...) /// /// If only a channel number is passed, then a previously initialized channel /// object is returned (or `None` if there is no previous channel). /// /// Othwerwise, a TimerChannel object is initialized and returned. /// /// Each channel can be configured to perform pwm, output compare, or /// input capture. All channels share the same underlying timer, which means /// that they share the same timer clock. /// /// Keyword arguments: /// /// - `mode` can be one of: /// - `Timer.PWM` - configure the timer in PWM mode (active high). /// - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low). /// - `Timer.OC_TIMING` - indicates that no pin is driven. /// - `Timer.OC_ACTIVE` - the pin will be made active when a compare /// match occurs (active is determined by polarity) /// - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare /// match occurs. /// - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs. /// - `Timer.IC` - configure the timer in Input Capture mode. /// /// - `callback` - as per TimerChannel.callback() /// /// - `pin` None (the default) or a Pin object. If specified (and not None) /// this will cause the alternate function of the the indicated pin /// to be configured for this timer channel. An error will be raised if /// the pin doesn't support any alternate functions for this timer channel. /// /// Keyword arguments for Timer.PWM modes: /// /// - `pulse_width` - determines the initial pulse width value to use. /// - `pulse_width_percent` - determines the initial pulse width percentage to use. /// /// Keyword arguments for Timer.OC modes: /// /// - `compare` - determines the initial value of the compare register. /// /// - `polarity` can be one of: /// - `Timer.HIGH` - output is active high /// - `Timer.LOW` - output is acive low /// /// Optional keyword arguments for Timer.IC modes: /// /// - `polarity` can be one of: /// - `Timer.RISING` - captures on rising edge. /// - `Timer.FALLING` - captures on falling edge. /// - `Timer.BOTH` - captures on both edges. /// /// PWM Example: /// /// timer = pyb.Timer(0, prescaler=128, period=37500, counter_mode=pyb.Timer.COUNTER_MODE_CENTER) /// ch0 = t0.channel(0, pyb.Timer.PWM, pin=pyb.Pin.board.D22, pulse_width=(t0.period() + 1) // 4) /// ch1 = t0.channel(1, pyb.Timer.PWM, pin=pyb.Pin.board.D23, pulse_width=(t0.period() + 1) // 2) STATIC const mp_arg_t pyb_timer_channel_args[] = { { MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_pulse_width, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_compare, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, }; #define PYB_TIMER_CHANNEL_NUM_ARGS MP_ARRAY_SIZE(pyb_timer_channel_args) STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { pyb_timer_obj_t *self = args[0]; mp_int_t channel = mp_obj_get_int(args[1]); if (channel < 0 || channel > 7) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid channel (%d)", channel)); } pyb_timer_channel_obj_t *chan = self->channel; pyb_timer_channel_obj_t *prev_chan = NULL; while (chan != NULL) { if (chan->channel == channel) { break; } prev_chan = chan; chan = chan->next; } // If only the channel number is given return the previously allocated // channel (or None if no previous channel). if (n_args == 2) { if (chan) { return chan; } return mp_const_none; } // If there was already a channel, then remove it from the list. Note that // the order we do things here is important so as to appear atomic to // the IRQ handler. if (chan) { // Turn off any IRQ associated with the channel. pyb_timer_channel_callback(chan, mp_const_none); // Unlink the channel from the list. if (prev_chan) { prev_chan->next = chan->next; } self->channel = chan->next; chan->next = NULL; } // Allocate and initialize a new channel mp_arg_val_t vals[PYB_TIMER_CHANNEL_NUM_ARGS]; mp_arg_parse_all(n_args - 3, args + 3, kw_args, PYB_TIMER_CHANNEL_NUM_ARGS, pyb_timer_channel_args, vals); chan = m_new_obj(pyb_timer_channel_obj_t); memset(chan, 0, sizeof(*chan)); chan->base.type = &pyb_timer_channel_type; chan->timer = self; chan->channel = channel; chan->mode = mp_obj_get_int(args[2]); chan->callback = vals[0].u_obj; mp_obj_t pin_obj = vals[1].u_obj; if (pin_obj != mp_const_none) { if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type")); } const pin_obj_t *pin = pin_obj; const pin_af_obj_t *af = pin_find_af(pin, AF_FN_FTM, self->tim_id); if (af == NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s doesn't have an af for TIM%d", qstr_str(pin->name), self->tim_id)); } // pin.init(mode=AF_PP, af=idx) const mp_obj_t args[6] = { (mp_obj_t)&pin_init_obj, pin_obj, MP_OBJ_NEW_QSTR(MP_QSTR_mode), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP), MP_OBJ_NEW_QSTR(MP_QSTR_af), MP_OBJ_NEW_SMALL_INT(af->idx) }; mp_call_method_n_kw(0, 2, args); } // Link the channel to the timer before we turn the channel on. // Note that this needs to appear atomic to the IRQ handler (the write // to self->channel is atomic, so we're good, but I thought I'd mention // in case this was ever changed in the future). chan->next = self->channel; self->channel = chan; switch (chan->mode) { case CHANNEL_MODE_PWM_NORMAL: case CHANNEL_MODE_PWM_INVERTED: { FTM_OC_InitTypeDef oc_config; oc_config.OCMode = channel_mode_info[chan->mode].oc_mode; if (vals[3].u_obj != mp_const_none) { // pulse width ratio given uint32_t period = compute_period(self); oc_config.Pulse = compute_pwm_value_from_percent(period, vals[3].u_obj); } else { // use absolute pulse width value (defaults to 0 if nothing given) oc_config.Pulse = vals[2].u_int; } oc_config.OCPolarity = FTM_OCPOLARITY_HIGH; HAL_FTM_PWM_ConfigChannel(&self->ftm, &oc_config, channel); if (chan->callback == mp_const_none) { HAL_FTM_PWM_Start(&self->ftm, channel); } else { HAL_FTM_PWM_Start_IT(&self->ftm, channel); } break; } case CHANNEL_MODE_OC_TIMING: case CHANNEL_MODE_OC_ACTIVE: case CHANNEL_MODE_OC_INACTIVE: case CHANNEL_MODE_OC_TOGGLE: { FTM_OC_InitTypeDef oc_config; oc_config.OCMode = channel_mode_info[chan->mode].oc_mode; oc_config.Pulse = vals[4].u_int; oc_config.OCPolarity = vals[5].u_int; if (oc_config.OCPolarity == 0xffffffff) { oc_config.OCPolarity = FTM_OCPOLARITY_HIGH; } if (!IS_FTM_OC_POLARITY(oc_config.OCPolarity)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid polarity (%d)", oc_config.OCPolarity)); } HAL_FTM_OC_ConfigChannel(&self->ftm, &oc_config, channel); if (chan->callback == mp_const_none) { HAL_FTM_OC_Start(&self->ftm, channel); } else { HAL_FTM_OC_Start_IT(&self->ftm, channel); } break; } case CHANNEL_MODE_IC: { FTM_IC_InitTypeDef ic_config; ic_config.ICPolarity = vals[5].u_int; if (ic_config.ICPolarity == 0xffffffff) { ic_config.ICPolarity = FTM_ICPOLARITY_RISING; } if (!IS_FTM_IC_POLARITY(ic_config.ICPolarity)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid polarity (%d)", ic_config.ICPolarity)); } HAL_FTM_IC_ConfigChannel(&self->ftm, &ic_config, chan->channel); if (chan->callback == mp_const_none) { HAL_FTM_IC_Start(&self->ftm, channel); } else { HAL_FTM_IC_Start_IT(&self->ftm, channel); } break; } default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid mode (%d)", chan->mode)); } return chan; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel); /// \method counter([value]) /// Get or set the timer counter. STATIC mp_obj_t pyb_timer_counter(mp_uint_t n_args, const mp_obj_t *args) { pyb_timer_obj_t *self = args[0]; if (n_args == 1) { // get return mp_obj_new_int(self->ftm.Instance->CNT); } // set - In order to write to CNT we need to set CNTIN self->ftm.Instance->CNTIN = mp_obj_get_int(args[1]); self->ftm.Instance->CNT = 0; // write any value to load CNTIN into CNT return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter); /// \method prescaler([value]) /// Get or set the prescaler for the timer. STATIC mp_obj_t pyb_timer_prescaler(mp_uint_t n_args, const mp_obj_t *args) { pyb_timer_obj_t *self = args[0]; if (n_args == 1) { // get return mp_obj_new_int(1 << (self->ftm.Instance->SC & 7)); } // set mp_uint_t prescaler_shift = get_prescaler_shift(mp_obj_get_int(args[1])); mp_uint_t sc = self->ftm.Instance->SC; sc &= ~7; sc |= FTM_SC_PS(prescaler_shift); self->ftm.Instance->SC = sc; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler); /// \method period([value]) /// Get or set the period of the timer. STATIC mp_obj_t pyb_timer_period(mp_uint_t n_args, const mp_obj_t *args) { pyb_timer_obj_t *self = args[0]; if (n_args == 1) { // get return mp_obj_new_int(self->ftm.Instance->MOD & 0xffff); } // set mp_int_t period = mp_obj_get_int(args[1]) & 0xffff; self->ftm.Instance->CNT = 0; self->ftm.Instance->MOD = period; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period); /// \method callback(fun) /// Set the function to be called when the timer triggers. /// `fun` is passed 1 argument, the timer object. /// If `fun` is `None` then the callback will be disabled. STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) { pyb_timer_obj_t *self = self_in; if (callback == mp_const_none) { // stop interrupt (but not timer) __HAL_FTM_DISABLE_TOF_IT(&self->ftm); self->callback = mp_const_none; } else if (mp_obj_is_callable(callback)) { self->callback = callback; HAL_NVIC_EnableIRQ(self->irqn); // start timer, so that it interrupts on overflow HAL_FTM_Base_Start_IT(&self->ftm); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object")); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback); #if MICROPY_TIMER_REG reg_t timer_reg[] = { REG_ENTRY(FTM_TypeDef, SC), REG_ENTRY(FTM_TypeDef, CNT), REG_ENTRY(FTM_TypeDef, MOD), REG_ENTRY(FTM_TypeDef, CNTIN), REG_ENTRY(FTM_TypeDef, STATUS), REG_ENTRY(FTM_TypeDef, MODE), REG_ENTRY(FTM_TypeDef, SYNC), REG_ENTRY(FTM_TypeDef, OUTINIT), REG_ENTRY(FTM_TypeDef, OUTMASK), REG_ENTRY(FTM_TypeDef, COMBINE), REG_ENTRY(FTM_TypeDef, DEADTIME), REG_ENTRY(FTM_TypeDef, EXTTRIG), REG_ENTRY(FTM_TypeDef, POL), REG_ENTRY(FTM_TypeDef, FMS), REG_ENTRY(FTM_TypeDef, FILTER), REG_ENTRY(FTM_TypeDef, FLTCTRL), REG_ENTRY(FTM_TypeDef, QDCTRL), REG_ENTRY(FTM_TypeDef, CONF), REG_ENTRY(FTM_TypeDef, FLTPOL), REG_ENTRY(FTM_TypeDef, SYNCONF), REG_ENTRY(FTM_TypeDef, INVCTRL), REG_ENTRY(FTM_TypeDef, SWOCTRL), REG_ENTRY(FTM_TypeDef, PWMLOAD), }; mp_obj_t pyb_timer_reg(uint n_args, const mp_obj_t *args) { pyb_timer_obj_t *self = args[0]; return reg_cmd(self->ftm.Instance, timer_reg, MP_ARRAY_SIZE(timer_reg), n_args - 1, args + 1); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_reg_obj, 1, 3, pyb_timer_reg); #endif // MICROPY_TIMER_REG STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_channel), (mp_obj_t)&pyb_timer_channel_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj }, #if MICROPY_TIMER_REG { MP_OBJ_NEW_QSTR(MP_QSTR_reg), (mp_obj_t)&pyb_timer_reg_obj }, #endif { MP_OBJ_NEW_QSTR(MP_QSTR_UP), MP_OBJ_NEW_SMALL_INT(FTM_COUNTERMODE_UP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_CENTER), MP_OBJ_NEW_SMALL_INT(FTM_COUNTERMODE_CENTER) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PWM), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_NORMAL) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PWM_INVERTED), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_INVERTED) }, { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TIMING), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TIMING) }, { MP_OBJ_NEW_QSTR(MP_QSTR_OC_ACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_ACTIVE) }, { MP_OBJ_NEW_QSTR(MP_QSTR_OC_INACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_INACTIVE) }, { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TOGGLE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TOGGLE) }, { MP_OBJ_NEW_QSTR(MP_QSTR_IC), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_IC) }, { MP_OBJ_NEW_QSTR(MP_QSTR_HIGH), MP_OBJ_NEW_SMALL_INT(FTM_OCPOLARITY_HIGH) }, { MP_OBJ_NEW_QSTR(MP_QSTR_LOW), MP_OBJ_NEW_SMALL_INT(FTM_OCPOLARITY_LOW) }, { MP_OBJ_NEW_QSTR(MP_QSTR_RISING), MP_OBJ_NEW_SMALL_INT(FTM_ICPOLARITY_RISING) }, { MP_OBJ_NEW_QSTR(MP_QSTR_FALLING), MP_OBJ_NEW_SMALL_INT(FTM_ICPOLARITY_FALLING) }, { MP_OBJ_NEW_QSTR(MP_QSTR_BOTH), MP_OBJ_NEW_SMALL_INT(FTM_ICPOLARITY_BOTH) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table); const mp_obj_type_t pyb_timer_type = { { &mp_type_type }, .name = MP_QSTR_Timer, .print = pyb_timer_print, .make_new = pyb_timer_make_new, .locals_dict = (mp_obj_t)&pyb_timer_locals_dict, }; /// \moduleref pyb /// \class TimerChannel - setup a channel for a timer. /// /// Timer channels are used to generate/capture a signal using a timer. /// /// TimerChannel objects are created using the Timer.channel() method. STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_timer_channel_obj_t *self = self_in; mp_printf(print, "TimerChannel(timer=%u, channel=%u, mode=%s)", self->timer->tim_id, self->channel, qstr_str(channel_mode_info[self->mode].name)); } /// \method capture([value]) /// Get or set the capture value associated with a channel. /// capture, compare, and pulse_width are all aliases for the same function. /// capture is the logical name to use when the channel is in input capture mode. /// \method compare([value]) /// Get or set the compare value associated with a channel. /// capture, compare, and pulse_width are all aliases for the same function. /// compare is the logical name to use when the channel is in output compare mode. /// \method pulse_width([value]) /// Get or set the pulse width value associated with a channel. /// capture, compare, and pulse_width are all aliases for the same function. /// pulse_width is the logical name to use when the channel is in PWM mode. /// /// In edge aligned mode, a pulse_width of `period + 1` corresponds to a duty cycle of 100% /// In center aligned mode, a pulse width of `period` corresponds to a duty cycle of 100% STATIC mp_obj_t pyb_timer_channel_capture_compare(mp_uint_t n_args, const mp_obj_t *args) { pyb_timer_channel_obj_t *self = args[0]; FTM_TypeDef *FTMx = self->timer->ftm.Instance; if (n_args == 1) { // get return mp_obj_new_int(FTMx->channel[self->channel].CV & 0xffff); } mp_int_t pw = mp_obj_get_int(args[1]); // set FTMx->channel[self->channel].CV = pw & 0xffff; return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare); /// \method pulse_width_percent([value]) /// Get or set the pulse width percentage associated with a channel. The value /// is a number between 0 and 100 and sets the percentage of the timer period /// for which the pulse is active. The value can be an integer or /// floating-point number for more accuracy. For example, a value of 25 gives /// a duty cycle of 25%. STATIC mp_obj_t pyb_timer_channel_pulse_width_percent(mp_uint_t n_args, const mp_obj_t *args) { pyb_timer_channel_obj_t *self = args[0]; FTM_TypeDef *FTMx = self->timer->ftm.Instance; uint32_t period = compute_period(self->timer); if (n_args == 1) { // get uint32_t cmp = FTMx->channel[self->channel].CV & 0xffff; return compute_percent_from_pwm_value(period, cmp); } else { // set uint32_t cmp = compute_pwm_value_from_percent(period, args[1]); FTMx->channel[self->channel].CV = cmp & 0xffff; return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_pulse_width_percent_obj, 1, 2, pyb_timer_channel_pulse_width_percent); /// \method callback(fun) /// Set the function to be called when the timer channel triggers. /// `fun` is passed 1 argument, the timer object. /// If `fun` is `None` then the callback will be disabled. STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback) { pyb_timer_channel_obj_t *self = self_in; if (callback == mp_const_none) { // stop interrupt (but not timer) __HAL_FTM_DISABLE_CH_IT(&self->timer->ftm, self->channel); self->callback = mp_const_none; } else if (mp_obj_is_callable(callback)) { self->callback = callback; HAL_NVIC_EnableIRQ(self->timer->irqn); // start timer, so that it interrupts on overflow switch (self->mode) { case CHANNEL_MODE_PWM_NORMAL: case CHANNEL_MODE_PWM_INVERTED: HAL_FTM_PWM_Start_IT(&self->timer->ftm, self->channel); break; case CHANNEL_MODE_OC_TIMING: case CHANNEL_MODE_OC_ACTIVE: case CHANNEL_MODE_OC_INACTIVE: case CHANNEL_MODE_OC_TOGGLE: HAL_FTM_OC_Start_IT(&self->timer->ftm, self->channel); break; case CHANNEL_MODE_IC: HAL_FTM_IC_Start_IT(&self->timer->ftm, self->channel); break; } } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object")); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_channel_callback_obj, pyb_timer_channel_callback); #if MICROPY_TIMER_REG reg_t timer_channel_reg[] = { REG_ENTRY(FTM_ChannelTypeDef, CSC), REG_ENTRY(FTM_ChannelTypeDef, CV), }; mp_obj_t pyb_timer_channel_reg(uint n_args, const mp_obj_t *args) { pyb_timer_channel_obj_t *self = args[0]; return reg_cmd(&self->timer->ftm.Instance->channel[self->channel], timer_channel_reg, MP_ARRAY_SIZE(timer_channel_reg), n_args - 1, args + 1); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_reg_obj, 1, 3, pyb_timer_channel_reg); #endif STATIC const mp_map_elem_t pyb_timer_channel_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_channel_callback_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width), (mp_obj_t)&pyb_timer_channel_capture_compare_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width_percent), (mp_obj_t)&pyb_timer_channel_pulse_width_percent_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_capture), (mp_obj_t)&pyb_timer_channel_capture_compare_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_compare), (mp_obj_t)&pyb_timer_channel_capture_compare_obj }, #if MICROPY_TIMER_REG { MP_OBJ_NEW_QSTR(MP_QSTR_reg), (mp_obj_t)&pyb_timer_channel_reg_obj }, #endif }; STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table); STATIC const mp_obj_type_t pyb_timer_channel_type = { { &mp_type_type }, .name = MP_QSTR_TimerChannel, .print = pyb_timer_channel_print, .locals_dict = (mp_obj_t)&pyb_timer_channel_locals_dict, }; STATIC bool ftm_handle_irq_callback(pyb_timer_obj_t *self, mp_uint_t channel, mp_obj_t callback) { // execute callback if it's set if (callback == mp_const_none) { return false; } bool handled = false; // When executing code within a handler we must lock the GC to prevent // any memory allocations. We must also catch any exceptions. gc_lock(); nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_call_function_1(callback, self); nlr_pop(); handled = true; } else { // Uncaught exception; disable the callback so it doesn't run again. self->callback = mp_const_none; if (channel == 0xffffffff) { printf("Uncaught exception in Timer(" UINT_FMT ") interrupt handler\n", self->tim_id); } else { printf("Uncaught exception in Timer(" UINT_FMT ") channel " UINT_FMT " interrupt handler\n", self->tim_id, channel); } mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val); } gc_unlock(); return handled; } STATIC void ftm_irq_handler(uint tim_id) { if (tim_id >= PYB_TIMER_OBJ_ALL_NUM) { return; } // get the timer object pyb_timer_obj_t *self = pyb_timer_obj_all[tim_id]; if (self == NULL) { // timer object has not been set, so we can't do anything printf("No timer object for id=%d\n", tim_id); return; } FTM_HandleTypeDef *hftm = &self->ftm; bool handled = false; // Check for timer (versus timer channel) interrupt. if (__HAL_FTM_GET_TOF_IT(hftm) && __HAL_FTM_GET_TOF_FLAG(hftm)) { __HAL_FTM_CLEAR_TOF_FLAG(hftm); if (ftm_handle_irq_callback(self, 0xffffffff, self->callback)) { handled = true; } else { __HAL_FTM_DISABLE_TOF_IT(&self->ftm); printf("No callback for Timer %d TOF (now disabled)\n", tim_id); } } uint32_t processed = 0; // Check to see if a timer channel interrupt is pending pyb_timer_channel_obj_t *chan = self->channel; while (chan != NULL) { processed |= (1 << chan->channel); if (__HAL_FTM_GET_CH_IT(&self->ftm, chan->channel) && __HAL_FTM_GET_CH_FLAG(&self->ftm, chan->channel)) { __HAL_FTM_CLEAR_CH_FLAG(&self->ftm, chan->channel); if (ftm_handle_irq_callback(self, chan->channel, chan->callback)) { handled = true; } else { __HAL_FTM_DISABLE_CH_IT(&self->ftm, chan->channel); printf("No callback for Timer %d channel %u (now disabled)\n", self->tim_id, chan->channel); } } chan = chan->next; } if (!handled) { // An interrupt occurred for a channel we didn't process. Find it and // turn it off. for (mp_uint_t channel = 0; channel < 8; channel++) { if ((processed & (1 << channel)) == 0) { if (__HAL_FTM_GET_CH_FLAG(&self->ftm, channel) != 0) { __HAL_FTM_CLEAR_CH_FLAG(&self->ftm, channel); __HAL_FTM_DISABLE_CH_IT(&self->ftm, channel); printf("Unhandled interrupt Timer %d channel %u (now disabled)\n", tim_id, channel); } } } } } void ftm0_isr(void) { ftm_irq_handler(0); } void ftm1_isr(void) { ftm_irq_handler(1); } void ftm2_isr(void) { ftm_irq_handler(2); }