// Essentially normal Python has 1 type: Python objects // Viper has more than 1 type, and is just a more complicated (a superset of) Python. // If you declare everything in Viper as a Python object (ie omit type decls) then // it should in principle be exactly the same as Python native. // Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc. // In practice we won't have a VM but rather do this in asm which is actually very minimal. // Because it breaks strict Python equivalence it should be a completely separate // decorator. It breaks equivalence because overflow on integers wraps around. // It shouldn't break equivalence if you don't use the new types, but since the // type decls might be used in normal Python for other reasons, it's probably safest, // cleanest and clearest to make it a separate decorator. // Actually, it does break equivalence because integers default to native integers, // not Python objects. // for x in l[0:8]: can be compiled into a native loop if l has pointer type #include #include #include #include #include #include #include "misc.h" #include "mpyconfig.h" #include "lexer.h" #include "parse.h" #include "scope.h" #include "runtime.h" #include "emit.h" // wrapper around everything in this file #if N_X64 || N_THUMB #if N_X64 // x64 specific stuff #include "asmx64.h" #define REG_LOCAL_1 (REG_RBX) #define REG_LOCAL_NUM (1) #define EXPORT_FUN(name) emit_native_x64_##name #define REG_TEMP0 (REG_RAX) #define REG_TEMP1 (REG_RDI) #define REG_TEMP2 (REG_RSI) #define ASM_MOV_REG_TO_LOCAL(reg, local_num) asm_x64_mov_r64_to_local(emit->as, (reg), (local_num)) #define ASM_MOV_IMM_TO_REG(imm, reg) asm_x64_mov_i64_to_r64_optimised(emit->as, (imm), (reg)) #define ASM_MOV_IMM_TO_LOCAL_USING(imm, local_num, reg_temp) do { asm_x64_mov_i64_to_r64_optimised(emit->as, (imm), (reg_temp)); asm_x64_mov_r64_to_local(emit->as, (reg_temp), (local_num)); } while (false) #define ASM_MOV_LOCAL_TO_REG(local_num, reg) asm_x64_mov_local_to_r64(emit->as, (local_num), (reg)) #define ASM_MOV_REG_TO_REG(reg_src, reg_dest) asm_x64_mov_r64_to_r64(emit->as, (reg_src), (reg_dest)) #define ASM_MOV_LOCAL_ADDR_TO_REG(local_num, reg) asm_x64_mov_local_addr_to_r64(emit->as, (local_num), (reg)) #elif N_THUMB // thumb specific stuff #include "asmthumb.h" #define REG_LOCAL_1 (REG_R4) #define REG_LOCAL_2 (REG_R5) #define REG_LOCAL_3 (REG_R6) #define REG_LOCAL_NUM (3) #define EXPORT_FUN(name) emit_native_thumb_##name #define REG_TEMP0 (REG_R0) #define REG_TEMP1 (REG_R1) #define REG_TEMP2 (REG_R2) #define ASM_MOV_REG_TO_LOCAL(reg, local_num) asm_thumb_mov_local_reg(emit->as, (local_num), (reg)) #define ASM_MOV_IMM_TO_REG(imm, reg) asm_thumb_mov_reg_i32_optimised(emit->as, (reg), (imm)) #define ASM_MOV_IMM_TO_LOCAL_USING(imm, local_num, reg_temp) do { asm_thumb_mov_reg_i32_optimised(emit->as, (reg_temp), (imm)); asm_thumb_mov_local_reg(emit->as, (local_num), (reg_temp)); } while (false) #define ASM_MOV_LOCAL_TO_REG(local_num, reg) asm_thumb_mov_reg_local(emit->as, (reg), (local_num)) #define ASM_MOV_REG_TO_REG(reg_src, reg_dest) asm_thumb_mov_reg_reg(emit->as, (reg_dest), (reg_src)) #define ASM_MOV_LOCAL_ADDR_TO_REG(local_num, reg) asm_thumb_mov_reg_local_addr(emit->as, (reg), (local_num)) #endif typedef enum { STACK_VALUE, STACK_REG, STACK_IMM, } stack_info_kind_t; typedef enum { VTYPE_UNBOUND, VTYPE_PYOBJ, VTYPE_BOOL, VTYPE_INT, VTYPE_PTR, VTYPE_PTR_NONE, VTYPE_BUILTIN_V_INT, } vtype_kind_t; typedef struct _stack_info_t { vtype_kind_t vtype; stack_info_kind_t kind; union { int u_reg; machine_int_t u_imm; }; } stack_info_t; struct _emit_t { int pass; bool do_viper_types; int local_vtype_alloc; vtype_kind_t *local_vtype; int stack_info_alloc; stack_info_t *stack_info; int stack_start; int stack_size; bool last_emit_was_return_value; scope_t *scope; #if N_X64 asm_x64_t *as; #elif N_THUMB asm_thumb_t *as; #endif }; emit_t *EXPORT_FUN(new)(uint max_num_labels) { emit_t *emit = m_new(emit_t, 1); emit->do_viper_types = false; emit->local_vtype = NULL; emit->stack_info = NULL; #if N_X64 emit->as = asm_x64_new(max_num_labels); #elif N_THUMB emit->as = asm_thumb_new(max_num_labels); #endif return emit; } static void emit_native_set_viper_types(emit_t *emit, bool do_viper_types) { emit->do_viper_types = do_viper_types; } static void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) { emit->pass = pass; emit->stack_start = 0; emit->stack_size = 0; emit->last_emit_was_return_value = false; emit->scope = scope; if (emit->local_vtype == NULL) { emit->local_vtype_alloc = scope->num_locals + 20; // XXX should be maximum over all scopes emit->local_vtype = m_new(vtype_kind_t, emit->local_vtype_alloc); } if (emit->stack_info == NULL) { emit->stack_info_alloc = scope->stack_size + 50; // XXX don't know stack size on entry, should be maximum over all scopes emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc); } if (emit->do_viper_types) { // TODO set types of arguments based on type signature for (int i = 0; i < emit->local_vtype_alloc; i++) { emit->local_vtype[i] = VTYPE_UNBOUND; } for (int i = 0; i < emit->stack_info_alloc; i++) { emit->stack_info[i].kind = STACK_VALUE; emit->stack_info[i].vtype = VTYPE_UNBOUND; } } else { for (int i = 0; i < emit->local_vtype_alloc; i++) { emit->local_vtype[i] = VTYPE_PYOBJ; } for (int i = 0; i < emit->stack_info_alloc; i++) { emit->stack_info[i].kind = STACK_VALUE; emit->stack_info[i].vtype = VTYPE_PYOBJ; } } #if N_X64 asm_x64_start_pass(emit->as, pass); #elif N_THUMB asm_thumb_start_pass(emit->as, pass); #endif // entry to function int num_locals = 0; if (pass > PASS_1) { num_locals = scope->num_locals - REG_LOCAL_NUM; if (num_locals < 0) { num_locals = 0; } emit->stack_start = num_locals; num_locals += scope->stack_size; } #if N_X64 asm_x64_entry(emit->as, num_locals); #elif N_THUMB asm_thumb_entry(emit->as, num_locals); #endif // initialise locals from parameters #if N_X64 for (int i = 0; i < scope->num_params; i++) { if (i == 0) { asm_x64_mov_r64_to_r64(emit->as, REG_ARG_1, REG_LOCAL_1); } else if (i == 1) { asm_x64_mov_r64_to_local(emit->as, REG_ARG_2, i - 1); } else if (i == 2) { asm_x64_mov_r64_to_local(emit->as, REG_ARG_3, i - 1); } else { // TODO not implemented assert(0); } } #elif N_THUMB for (int i = 0; i < scope->num_params; i++) { if (i == 0) { asm_thumb_mov_reg_reg(emit->as, REG_LOCAL_1, REG_ARG_1); } else if (i == 1) { asm_thumb_mov_reg_reg(emit->as, REG_LOCAL_2, REG_ARG_2); } else if (i == 2) { asm_thumb_mov_reg_reg(emit->as, REG_LOCAL_3, REG_ARG_3); } else if (i == 3) { asm_thumb_mov_local_reg(emit->as, i - REG_LOCAL_NUM, REG_ARG_4); } else { // TODO not implemented assert(0); } } asm_thumb_mov_reg_i32(emit->as, REG_R7, (machine_uint_t)rt_fun_table); #endif } static void emit_native_end_pass(emit_t *emit) { #if N_X64 if (!emit->last_emit_was_return_value) { asm_x64_exit(emit->as); } asm_x64_end_pass(emit->as); #elif N_THUMB if (!emit->last_emit_was_return_value) { asm_thumb_exit(emit->as); } asm_thumb_end_pass(emit->as); #endif // check stack is back to zero size if (emit->stack_size != 0) { printf("ERROR: stack size not back to zero; got %d\n", emit->stack_size); } if (emit->pass == PASS_3) { #if N_X64 py_fun_t f = asm_x64_get_code(emit->as); rt_assign_native_code(emit->scope->unique_code_id, f, asm_x64_get_code_size(emit->as), emit->scope->num_params); #elif N_THUMB py_fun_t f = asm_thumb_get_code(emit->as); rt_assign_native_code(emit->scope->unique_code_id, f, asm_thumb_get_code_size(emit->as), emit->scope->num_params); #endif } } static bool emit_native_last_emit_was_return_value(emit_t *emit) { return emit->last_emit_was_return_value; } static int emit_native_get_stack_size(emit_t *emit) { return emit->stack_size; } static void emit_native_set_stack_size(emit_t *emit, int size) { emit->stack_size = size; } static void adjust_stack(emit_t *emit, int stack_size_delta) { emit->stack_size += stack_size_delta; assert(emit->stack_size >= 0); if (emit->pass > PASS_1 && emit->stack_size > emit->scope->stack_size) { emit->scope->stack_size = emit->stack_size; } } /* static void emit_pre_raw(emit_t *emit, int stack_size_delta) { adjust_stack(emit, stack_size_delta); emit->last_emit_was_return_value = false; } */ // this must be called at start of emit functions static void emit_pre(emit_t *emit) { emit->last_emit_was_return_value = false; // settle the stack /* if (regs_needed != 0) { for (int i = 0; i < emit->stack_size; i++) { switch (emit->stack_info[i].kind) { case STACK_VALUE: break; case STACK_REG: // TODO only push reg if in regs_needed emit->stack_info[i].kind = STACK_VALUE; ASM_MOV_REG_TO_LOCAL(emit->stack_info[i].u_reg, emit->stack_start + i); break; case STACK_IMM: // don't think we ever need to push imms for settling //ASM_MOV_IMM_TO_LOCAL(emit->last_imm, emit->stack_start + i); break; } } } */ } static vtype_kind_t peek_vtype(emit_t *emit) { return emit->stack_info[emit->stack_size - 1].vtype; } // pos=1 is TOS, pos=2 is next, etc // use pos=0 for no skipping static void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) { skip_stack_pos = emit->stack_size - skip_stack_pos; for (int i = 0; i < emit->stack_size; i++) { if (i != skip_stack_pos) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_REG && si->u_reg == reg_needed) { si->kind = STACK_VALUE; ASM_MOV_REG_TO_LOCAL(si->u_reg, emit->stack_start + i); } } } } static void need_reg_all(emit_t *emit) { for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_REG) { si->kind = STACK_VALUE; ASM_MOV_REG_TO_LOCAL(si->u_reg, emit->stack_start + i); } } } static void need_stack_settled(emit_t *emit) { for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_REG) { si->kind = STACK_VALUE; ASM_MOV_REG_TO_LOCAL(si->u_reg, emit->stack_start + i); } } for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_IMM) { ASM_MOV_IMM_TO_LOCAL_USING(si->u_imm, emit->stack_start + i, REG_TEMP0); } } } // pos=1 is TOS, pos=2 is next, etc static void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) { need_reg_single(emit, reg_dest, pos); stack_info_t *si = &emit->stack_info[emit->stack_size - pos]; *vtype = si->vtype; switch (si->kind) { case STACK_VALUE: ASM_MOV_LOCAL_TO_REG(emit->stack_start + emit->stack_size - pos, reg_dest); break; case STACK_REG: if (si->u_reg != reg_dest) { ASM_MOV_REG_TO_REG(si->u_reg, reg_dest); } break; case STACK_IMM: ASM_MOV_IMM_TO_REG(si->u_imm, reg_dest); break; } } static void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) { emit->last_emit_was_return_value = false; emit_access_stack(emit, 1, vtype, reg_dest); adjust_stack(emit, -1); } static void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) { emit_pre_pop_reg(emit, vtypea, rega); emit_pre_pop_reg(emit, vtypeb, regb); } static void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) { emit_pre_pop_reg(emit, vtypea, rega); emit_pre_pop_reg(emit, vtypeb, regb); emit_pre_pop_reg(emit, vtypec, regc); } static void emit_post(emit_t *emit) { } static void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) { stack_info_t *si = &emit->stack_info[emit->stack_size]; si->vtype = vtype; si->kind = STACK_REG; si->u_reg = reg; adjust_stack(emit, 1); } static void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, machine_int_t imm) { stack_info_t *si = &emit->stack_info[emit->stack_size]; si->vtype = vtype; si->kind = STACK_IMM; si->u_imm = imm; adjust_stack(emit, 1); } static void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); } static void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); emit_post_push_reg(emit, vtypec, regc); } static void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); emit_post_push_reg(emit, vtypec, regc); emit_post_push_reg(emit, vtyped, regd); } // vtype of all n_pop objects is VTYPE_PYOBJ // does not use any temporary registers (but may use reg_dest before loading it with stack pointer) static void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, int reg_dest, int n_pop) { need_reg_all(emit); for (int i = 0; i < n_pop; i++) { stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i]; // must push any imm's to stack if (si->kind == STACK_IMM) { si->kind = STACK_VALUE; ASM_MOV_IMM_TO_LOCAL_USING(si->u_imm, emit->stack_start + emit->stack_size - 1 - i, reg_dest); } assert(si->kind == STACK_VALUE); assert(si->vtype == VTYPE_PYOBJ); } ASM_MOV_LOCAL_ADDR_TO_REG(emit->stack_start + emit->stack_size - 1, reg_dest); adjust_stack(emit, -n_pop); } // vtype of all n_push objects is VTYPE_PYOBJ static void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, int reg_dest, int n_push) { need_reg_all(emit); for (int i = 0; i < n_push; i++) { emit->stack_info[emit->stack_size + i].kind = STACK_VALUE; emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ; } ASM_MOV_LOCAL_ADDR_TO_REG(emit->stack_start + emit->stack_size + n_push - 1, reg_dest); adjust_stack(emit, n_push); } static void emit_call(emit_t *emit, rt_fun_kind_t fun_kind, void *fun) { need_reg_all(emit); #if N_X64 asm_x64_call_ind(emit->as, fun, REG_RAX); #elif N_THUMB asm_thumb_bl_ind(emit->as, rt_fun_table[fun_kind], fun_kind, REG_R3); #endif } static void emit_call_with_imm_arg(emit_t *emit, rt_fun_kind_t fun_kind, void *fun, machine_int_t arg_val, int arg_reg) { need_reg_all(emit); ASM_MOV_IMM_TO_REG(arg_val, arg_reg); #if N_X64 asm_x64_call_ind(emit->as, fun, REG_RAX); #elif N_THUMB asm_thumb_bl_ind(emit->as, rt_fun_table[fun_kind], fun_kind, REG_R3); #endif } static void emit_native_load_id(emit_t *emit, qstr qstr) { // check for built-ins if (strcmp(qstr_str(qstr), "v_int") == 0) { assert(0); emit_pre(emit); //emit_post_push_blank(emit, VTYPE_BUILTIN_V_INT); // not a built-in, so do usual thing } else { emit_common_load_id(emit, &EXPORT_FUN(method_table), emit->scope, qstr); } } static void emit_native_store_id(emit_t *emit, qstr qstr) { // TODO check for built-ins and disallow emit_common_store_id(emit, &EXPORT_FUN(method_table), emit->scope, qstr); } static void emit_native_delete_id(emit_t *emit, qstr qstr) { // TODO check for built-ins and disallow emit_common_delete_id(emit, &EXPORT_FUN(method_table), emit->scope, qstr); } static void emit_native_label_assign(emit_t *emit, int l) { emit_pre(emit); // need to commit stack because we can jump here from elsewhere need_stack_settled(emit); #if N_X64 asm_x64_label_assign(emit->as, l); #elif N_THUMB asm_thumb_label_assign(emit->as, l); #endif emit_post(emit); } static void emit_native_import_name(emit_t *emit, qstr qstr) { // not implemented assert(0); } static void emit_native_import_from(emit_t *emit, qstr qstr) { // not implemented assert(0); } static void emit_native_import_star(emit_t *emit) { // not implemented assert(0); } static void emit_native_load_const_tok(emit_t *emit, py_token_kind_t tok) { emit_pre(emit); int vtype; machine_uint_t val; if (emit->do_viper_types) { switch (tok) { case PY_TOKEN_KW_NONE: vtype = VTYPE_PTR_NONE; val = 0; break; case PY_TOKEN_KW_FALSE: vtype = VTYPE_BOOL; val = 0; break; case PY_TOKEN_KW_TRUE: vtype = VTYPE_BOOL; val = 1; break; default: assert(0); vtype = 0; val = 0; // shouldn't happen } } else { vtype = VTYPE_PYOBJ; switch (tok) { case PY_TOKEN_KW_NONE: val = (machine_uint_t)py_const_none; break; case PY_TOKEN_KW_FALSE: val = (machine_uint_t)py_const_false; break; case PY_TOKEN_KW_TRUE: val = (machine_uint_t)py_const_true; break; default: assert(0); vtype = 0; val = 0; // shouldn't happen } } emit_post_push_imm(emit, vtype, val); } static void emit_native_load_const_small_int(emit_t *emit, int arg) { emit_pre(emit); if (emit->do_viper_types) { emit_post_push_imm(emit, VTYPE_INT, arg); } else { emit_post_push_imm(emit, VTYPE_PYOBJ, (arg << 1) | 1); } } static void emit_native_load_const_int(emit_t *emit, qstr qstr) { // not implemented // load integer, check fits in 32 bits assert(0); } static void emit_native_load_const_dec(emit_t *emit, qstr qstr) { // for viper, a float/complex is just a Python object emit_pre(emit); emit_call_with_imm_arg(emit, RT_F_LOAD_CONST_DEC, rt_load_const_dec, qstr, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_load_const_id(emit_t *emit, qstr qstr) { emit_pre(emit); if (emit->do_viper_types) { assert(0); } else { emit_call_with_imm_arg(emit, RT_F_LOAD_CONST_STR, rt_load_const_str, qstr, REG_ARG_1); // TODO emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } static void emit_native_load_const_str(emit_t *emit, qstr qstr, bool bytes) { emit_pre(emit); if (emit->do_viper_types) { // not implemented properly // load a pointer to the asciiz string? assert(0); emit_post_push_imm(emit, VTYPE_PTR, (machine_uint_t)qstr_str(qstr)); } else { emit_call_with_imm_arg(emit, RT_F_LOAD_CONST_STR, rt_load_const_str, qstr, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } static void emit_native_load_const_verbatim_start(emit_t *emit) { // not supported/needed for viper assert(0); } static void emit_native_load_const_verbatim_int(emit_t *emit, int val) { // not supported/needed for viper assert(0); } static void emit_native_load_const_verbatim_str(emit_t *emit, const char *str) { // not supported/needed for viper assert(0); } static void emit_native_load_const_verbatim_strn(emit_t *emit, const char *str, int len) { // not supported/needed for viper assert(0); } static void emit_native_load_const_verbatim_quoted_str(emit_t *emit, qstr qstr, bool bytes) { // not supported/needed for viper assert(0); } static void emit_native_load_const_verbatim_end(emit_t *emit) { // not supported/needed for viper assert(0); } static void emit_native_load_fast(emit_t *emit, qstr qstr, int local_num) { vtype_kind_t vtype = emit->local_vtype[local_num]; if (vtype == VTYPE_UNBOUND) { printf("ViperTypeError: local %s used before type known\n", qstr_str(qstr)); } emit_pre(emit); #if N_X64 if (local_num == 0) { emit_post_push_reg(emit, vtype, REG_LOCAL_1); } else { need_reg_single(emit, REG_RAX, 0); asm_x64_mov_local_to_r64(emit->as, local_num - 1, REG_RAX); emit_post_push_reg(emit, vtype, REG_RAX); } #elif N_THUMB if (local_num == 0) { emit_post_push_reg(emit, vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_post_push_reg(emit, vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_post_push_reg(emit, vtype, REG_LOCAL_3); } else { need_reg_single(emit, REG_R0, 0); asm_thumb_mov_reg_local(emit->as, REG_R0, local_num - 1); emit_post_push_reg(emit, vtype, REG_R0); } #endif } static void emit_native_load_name(emit_t *emit, qstr qstr) { emit_pre(emit); emit_call_with_imm_arg(emit, RT_F_LOAD_NAME, rt_load_name, qstr, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_load_global(emit_t *emit, qstr qstr) { emit_pre(emit); emit_call_with_imm_arg(emit, RT_F_LOAD_GLOBAL, rt_load_global, qstr, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_load_deref(emit_t *emit, qstr qstr, int local_num) { // not implemented // in principle could support this quite easily (ldr r0, [r0, #0]) and then get closed over variables! assert(0); } static void emit_native_load_closure(emit_t *emit, qstr qstr, int local_num) { // not implemented assert(0); } static void emit_native_load_attr(emit_t *emit, qstr qstr) { // depends on type of subject: // - integer, function, pointer to integers: error // - pointer to structure: get member, quite easy // - Python object: call rt_load_attr, and needs to be typed to convert result vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, RT_F_LOAD_ATTR, rt_load_attr, qstr, REG_ARG_2); // arg2 = attribute name emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_load_method(emit_t *emit, qstr qstr) { vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr emit_call_with_imm_arg(emit, RT_F_LOAD_METHOD, rt_load_method, qstr, REG_ARG_2); // arg2 = method name } static void emit_native_load_build_class(emit_t *emit) { emit_pre(emit); emit_call(emit, RT_F_LOAD_BUILD_CLASS, rt_load_build_class); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_store_fast(emit_t *emit, qstr qstr, int local_num) { vtype_kind_t vtype; #if N_X64 if (local_num == 0) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1); } else { emit_pre_pop_reg(emit, &vtype, REG_RAX); asm_x64_mov_r64_to_local(emit->as, REG_RAX, local_num - 1); } #elif N_THUMB if (local_num == 0) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_3); } else { emit_pre_pop_reg(emit, &vtype, REG_R0); asm_thumb_mov_local_reg(emit->as, local_num - 1, REG_R0); } #endif emit_post(emit); // check types if (emit->local_vtype[local_num] == VTYPE_UNBOUND) { // first time this local is assigned, so give it a type of the object stored in it emit->local_vtype[local_num] = vtype; } else if (emit->local_vtype[local_num] != vtype) { // type of local is not the same as object stored in it printf("ViperTypeError: type mismatch, local %s has type %d but source object has type %d\n", qstr_str(qstr), emit->local_vtype[local_num], vtype); } } static void emit_native_store_name(emit_t *emit, qstr qstr) { // rt_store_name, but needs conversion of object (maybe have rt_viper_store_name(obj, type)) vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_2); assert(vtype == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, RT_F_STORE_NAME, rt_store_name, qstr, REG_ARG_1); // arg1 = name emit_post(emit); } static void emit_native_store_global(emit_t *emit, qstr qstr) { // not implemented assert(0); } static void emit_native_store_deref(emit_t *emit, qstr qstr, int local_num) { // not implemented assert(0); } static void emit_native_store_attr(emit_t *emit, qstr qstr) { vtype_kind_t vtype_base, vtype_val; emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value assert(vtype_base == VTYPE_PYOBJ); assert(vtype_val == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, RT_F_STORE_ATTR, rt_store_attr, qstr, REG_ARG_2); // arg2 = attribute name emit_post(emit); } static void emit_native_store_subscr(emit_t *emit) { // depends on type of subject: // - integer, function, pointer to structure: error // - pointer to integers: store as per array // - Python object: call runtime with converted object or type info vtype_kind_t vtype_index, vtype_base, vtype_value; emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3); // index, base, value to store assert(vtype_index == VTYPE_PYOBJ); assert(vtype_base == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); emit_call(emit, RT_F_STORE_SUBSCR, rt_store_subscr); } static void emit_native_store_locals(emit_t *emit) { // not needed vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_TEMP0); emit_post(emit); } static void emit_native_delete_fast(emit_t *emit, qstr qstr, int local_num) { // not implemented // could support for Python types, just set to None (so GC can reclaim it) assert(0); } static void emit_native_delete_name(emit_t *emit, qstr qstr) { // not implemented // use rt_delete_name assert(0); } static void emit_native_delete_global(emit_t *emit, qstr qstr) { // not implemented // use rt_delete_global assert(0); } static void emit_native_delete_deref(emit_t *emit, qstr qstr, int local_num) { // not supported assert(0); } static void emit_native_delete_attr(emit_t *emit, qstr qstr) { // not supported assert(0); } static void emit_native_delete_subscr(emit_t *emit) { // not supported assert(0); } static void emit_native_dup_top(emit_t *emit) { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_TEMP0); emit_post_push_reg_reg(emit, vtype, REG_TEMP0, vtype, REG_TEMP0); } static void emit_native_dup_top_two(emit_t *emit) { vtype_kind_t vtype0, vtype1; emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0); } static void emit_native_pop_top(emit_t *emit) { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_TEMP0); emit_post(emit); } static void emit_native_rot_two(emit_t *emit) { vtype_kind_t vtype0, vtype1; emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1); } static void emit_native_rot_three(emit_t *emit) { vtype_kind_t vtype0, vtype1, vtype2; emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2); emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1); } static void emit_native_jump(emit_t *emit, int label) { emit_pre(emit); #if N_X64 asm_x64_jmp_label(emit->as, label); #elif N_THUMB asm_thumb_b_label(emit->as, label); #endif emit_post(emit); } static void emit_native_pop_jump_pre_helper(emit_t *emit, int label) { vtype_kind_t vtype = peek_vtype(emit); if (vtype == VTYPE_BOOL) { emit_pre_pop_reg(emit, &vtype, REG_RET); } else if (vtype == VTYPE_PYOBJ) { emit_pre_pop_reg(emit, &vtype, REG_ARG_1); emit_call(emit, RT_F_IS_TRUE, rt_is_true); } else { printf("ViperTypeError: expecting a bool or pyobj, got %d\n", vtype); assert(0); } } static void emit_native_pop_jump_if_false(emit_t *emit, int label) { emit_native_pop_jump_pre_helper(emit, label); #if N_X64 asm_x64_test_r8_with_r8(emit->as, REG_RET, REG_RET); asm_x64_jcc_label(emit->as, JCC_JZ, label); #elif N_THUMB asm_thumb_cmp_rlo_i8(emit->as, REG_RET, 0); asm_thumb_bcc_label(emit->as, THUMB_CC_EQ, label); #endif emit_post(emit); } static void emit_native_pop_jump_if_true(emit_t *emit, int label) { emit_native_pop_jump_pre_helper(emit, label); #if N_X64 asm_x64_test_r8_with_r8(emit->as, REG_RET, REG_RET); asm_x64_jcc_label(emit->as, JCC_JNZ, label); #elif N_THUMB asm_thumb_cmp_rlo_i8(emit->as, REG_RET, 0); asm_thumb_bcc_label(emit->as, THUMB_CC_NE, label); #endif emit_post(emit); } static void emit_native_jump_if_true_or_pop(emit_t *emit, int label) { assert(0); } static void emit_native_jump_if_false_or_pop(emit_t *emit, int label) { assert(0); } static void emit_native_setup_loop(emit_t *emit, int label) { emit_pre(emit); emit_post(emit); } static void emit_native_break_loop(emit_t *emit, int label) { emit_native_jump(emit, label); // TODO properly } static void emit_native_continue_loop(emit_t *emit, int label) { assert(0); } static void emit_native_setup_with(emit_t *emit, int label) { // not supported, or could be with runtime call assert(0); } static void emit_native_with_cleanup(emit_t *emit) { assert(0); } static void emit_native_setup_except(emit_t *emit, int label) { assert(0); } static void emit_native_setup_finally(emit_t *emit, int label) { assert(0); } static void emit_native_end_finally(emit_t *emit) { assert(0); } static void emit_native_get_iter(emit_t *emit) { // perhaps the difficult one, as we want to rewrite for loops using native code // in cases where we iterate over a Python object, can we use normal runtime calls? vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_1); assert(vtype == VTYPE_PYOBJ); emit_call(emit, RT_F_GETITER, rt_getiter); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_for_iter(emit_t *emit, int label) { emit_pre(emit); vtype_kind_t vtype; emit_access_stack(emit, 1, &vtype, REG_ARG_1); assert(vtype == VTYPE_PYOBJ); emit_call(emit, RT_F_ITERNEXT, rt_iternext); ASM_MOV_IMM_TO_REG((machine_uint_t)py_const_stop_iteration, REG_TEMP1); #if N_X64 asm_x64_cmp_r64_with_r64(emit->as, REG_RET, REG_TEMP1); asm_x64_jcc_label(emit->as, JCC_JE, label); #elif N_THUMB asm_thumb_cmp_reg_reg(emit->as, REG_RET, REG_TEMP1); asm_thumb_bcc_label(emit->as, THUMB_CC_EQ, label); #endif emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_for_iter_end(emit_t *emit) { // adjust stack counter (we get here from for_iter ending, which popped the value for us) emit_pre(emit); adjust_stack(emit, -1); emit_post(emit); } static void emit_native_pop_block(emit_t *emit) { emit_pre(emit); emit_post(emit); } static void emit_native_pop_except(emit_t *emit) { assert(0); } static void emit_native_unary_op(emit_t *emit, rt_unary_op_t op) { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_2); assert(vtype == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, RT_F_UNARY_OP, rt_unary_op, op, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_binary_op(emit_t *emit, rt_binary_op_t op) { vtype_kind_t vtype_lhs, vtype_rhs; emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2); if (vtype_lhs == VTYPE_INT && vtype_rhs == VTYPE_INT) { assert(op == RT_BINARY_OP_ADD || op == RT_BINARY_OP_INPLACE_ADD); #if N_X64 asm_x64_add_r64_to_r64(emit->as, REG_ARG_3, REG_ARG_2); #elif N_THUMB asm_thumb_add_reg_reg_reg(emit->as, REG_ARG_2, REG_ARG_2, REG_ARG_3); #endif emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) { emit_call_with_imm_arg(emit, RT_F_BINARY_OP, rt_binary_op, op, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { printf("ViperTypeError: can't do binary op between types %d and %d\n", vtype_lhs, vtype_rhs); assert(0); } } static void emit_native_compare_op(emit_t *emit, rt_compare_op_t op) { vtype_kind_t vtype_lhs, vtype_rhs; emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2); if (vtype_lhs == VTYPE_INT && vtype_rhs == VTYPE_INT) { assert(op == RT_COMPARE_OP_LESS); #if N_X64 asm_x64_xor_r64_to_r64(emit->as, REG_RET, REG_RET); asm_x64_cmp_r64_with_r64(emit->as, REG_ARG_3, REG_ARG_2); asm_x64_setcc_r8(emit->as, JCC_JL, REG_RET); #elif N_THUMB asm_thumb_cmp_reg_reg(emit->as, REG_ARG_2, REG_ARG_3); asm_thumb_ite_ge(emit->as); asm_thumb_movs_rlo_i8(emit->as, REG_RET, 0); // if r0 >= r1 asm_thumb_movs_rlo_i8(emit->as, REG_RET, 1); // if r0 < r1 #endif emit_post_push_reg(emit, VTYPE_BOOL, REG_RET); } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) { emit_call_with_imm_arg(emit, RT_F_COMPARE_OP, rt_compare_op, op, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { printf("ViperTypeError: can't do comparison between types %d and %d\n", vtype_lhs, vtype_rhs); assert(0); } } static void emit_native_build_tuple(emit_t *emit, int n_args) { // for viper: call runtime, with types of args // if wrapped in byte_array, or something, allocates memory and fills it emit_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items in reverse order emit_call_with_imm_arg(emit, RT_F_BUILD_TUPLE, rt_build_tuple, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple } static void emit_native_build_list(emit_t *emit, int n_args) { emit_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items in reverse order emit_call_with_imm_arg(emit, RT_F_BUILD_LIST, rt_build_list, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new list } static void emit_native_list_append(emit_t *emit, int list_index) { // only used in list comprehension vtype_kind_t vtype_list, vtype_item; emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); emit_access_stack(emit, list_index, &vtype_list, REG_ARG_1); assert(vtype_list == VTYPE_PYOBJ); assert(vtype_item == VTYPE_PYOBJ); emit_call(emit, RT_F_LIST_APPEND, rt_list_append); emit_post(emit); } static void emit_native_build_map(emit_t *emit, int n_args) { emit_pre(emit); emit_call_with_imm_arg(emit, RT_F_BUILD_MAP, rt_build_map, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new map } static void emit_native_store_map(emit_t *emit) { vtype_kind_t vtype_key, vtype_value, vtype_map; emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map assert(vtype_key == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); assert(vtype_map == VTYPE_PYOBJ); emit_call(emit, RT_F_STORE_MAP, rt_store_map); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map } static void emit_native_map_add(emit_t *emit, int map_index) { // only used in list comprehension vtype_kind_t vtype_map, vtype_key, vtype_value; emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3); emit_access_stack(emit, map_index, &vtype_map, REG_ARG_1); assert(vtype_map == VTYPE_PYOBJ); assert(vtype_key == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); emit_call(emit, RT_F_STORE_MAP, rt_store_map); emit_post(emit); } static void emit_native_build_set(emit_t *emit, int n_args) { emit_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items in reverse order emit_call_with_imm_arg(emit, RT_F_BUILD_SET, rt_build_set, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new set } static void emit_native_set_add(emit_t *emit, int set_index) { // only used in set comprehension vtype_kind_t vtype_set, vtype_item; emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); emit_access_stack(emit, set_index, &vtype_set, REG_ARG_1); assert(vtype_set == VTYPE_PYOBJ); assert(vtype_item == VTYPE_PYOBJ); emit_call(emit, RT_F_STORE_SET, rt_store_set); emit_post(emit); } static void emit_native_build_slice(emit_t *emit, int n_args) { assert(0); } static void emit_native_unpack_sequence(emit_t *emit, int n_args) { // call runtime, needs type decl assert(0); } static void emit_native_unpack_ex(emit_t *emit, int n_left, int n_right) { assert(0); } static void emit_native_make_function(emit_t *emit, scope_t *scope, int n_dict_params, int n_default_params) { // call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them assert(n_default_params == 0 && n_dict_params == 0); emit_pre(emit); emit_call_with_imm_arg(emit, RT_F_MAKE_FUNCTION_FROM_ID, rt_make_function_from_id, scope->unique_code_id, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_make_closure(emit_t *emit, scope_t *scope, int n_dict_params, int n_default_params) { assert(0); } static void emit_native_call_function(emit_t *emit, int n_positional, int n_keyword, bool have_star_arg, bool have_dbl_star_arg) { // call special viper runtime routine with type info for args, and wanted type info for return assert(n_keyword == 0 && !have_star_arg && !have_dbl_star_arg); /* if (n_positional == 0) { vtype_kind_t vtype_fun; emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function assert(vtype_fun == VTYPE_PYOBJ); emit_call(emit, RT_F_CALL_FUNCTION_0, rt_call_function_0); } else if (n_positional == 1) { vtype_kind_t vtype_fun, vtype_arg1; emit_pre_pop_reg_reg(emit, &vtype_arg1, REG_ARG_2, &vtype_fun, REG_ARG_1); // the single argument, the function assert(vtype_fun == VTYPE_PYOBJ); assert(vtype_arg1 == VTYPE_PYOBJ); emit_call(emit, RT_F_CALL_FUNCTION_1, rt_call_function_1); } else if (n_positional == 2) { vtype_kind_t vtype_fun, vtype_arg1, vtype_arg2; emit_pre_pop_reg_reg_reg(emit, &vtype_arg2, REG_ARG_3, &vtype_arg1, REG_ARG_2, &vtype_fun, REG_ARG_1); // the second argument, the first argument, the function assert(vtype_fun == VTYPE_PYOBJ); assert(vtype_arg1 == VTYPE_PYOBJ); assert(vtype_arg2 == VTYPE_PYOBJ); emit_call(emit, RT_F_CALL_FUNCTION_2, rt_call_function_2); } else { */ emit_pre(emit); if (n_positional != 0) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional); // pointer to args in reverse order } vtype_kind_t vtype_fun; emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function assert(vtype_fun == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, RT_F_CALL_FUNCTION_N, rt_call_function_n, n_positional, REG_ARG_2); //} emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_call_method(emit_t *emit, int n_positional, int n_keyword, bool have_star_arg, bool have_dbl_star_arg) { assert(n_keyword == 0 && !have_star_arg && !have_dbl_star_arg); /* if (n_positional == 0) { vtype_kind_t vtype_meth, vtype_self; emit_pre_pop_reg_reg(emit, &vtype_self, REG_ARG_2, &vtype_meth, REG_ARG_1); // the self object (or NULL), the method assert(vtype_meth == VTYPE_PYOBJ); assert(vtype_self == VTYPE_PYOBJ); emit_call(emit, RT_F_CALL_METHOD_1, rt_call_method_1); } else if (n_positional == 1) { vtype_kind_t vtype_meth, vtype_self, vtype_arg1; emit_pre_pop_reg_reg_reg(emit, &vtype_arg1, REG_ARG_3, &vtype_self, REG_ARG_2, &vtype_meth, REG_ARG_1); // the first argument, the self object (or NULL), the method assert(vtype_meth == VTYPE_PYOBJ); assert(vtype_self == VTYPE_PYOBJ); assert(vtype_arg1 == VTYPE_PYOBJ); emit_call(emit, RT_F_CALL_METHOD_2, rt_call_method_2); } else { */ emit_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_positional + 2); // pointer to items in reverse order, including meth and self emit_call_with_imm_arg(emit, RT_F_CALL_METHOD_N, rt_call_method_n, n_positional, REG_ARG_1); //} emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } static void emit_native_return_value(emit_t *emit) { // easy. since we don't know who we return to, just return the raw value. // runtime needs then to know our type signature, but I think that's possible. vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_RET); if (emit->do_viper_types) { assert(vtype == VTYPE_PTR_NONE); } else { assert(vtype == VTYPE_PYOBJ); } emit->last_emit_was_return_value = true; #if N_X64 //asm_x64_call_ind(emit->as, 0, REG_RAX); to seg fault for debugging with gdb asm_x64_exit(emit->as); #elif N_THUMB //asm_thumb_call_ind(emit->as, 0, REG_R0); to seg fault for debugging with gdb asm_thumb_exit(emit->as); #endif } static void emit_native_raise_varargs(emit_t *emit, int n_args) { // call runtime assert(0); } static void emit_native_yield_value(emit_t *emit) { // not supported (for now) assert(0); } static void emit_native_yield_from(emit_t *emit) { // not supported (for now) assert(0); } const emit_method_table_t EXPORT_FUN(method_table) = { emit_native_set_viper_types, emit_native_start_pass, emit_native_end_pass, emit_native_last_emit_was_return_value, emit_native_get_stack_size, emit_native_set_stack_size, emit_native_load_id, emit_native_store_id, emit_native_delete_id, emit_native_label_assign, emit_native_import_name, emit_native_import_from, emit_native_import_star, emit_native_load_const_tok, emit_native_load_const_small_int, emit_native_load_const_int, emit_native_load_const_dec, emit_native_load_const_id, emit_native_load_const_str, emit_native_load_const_verbatim_start, emit_native_load_const_verbatim_int, emit_native_load_const_verbatim_str, emit_native_load_const_verbatim_strn, emit_native_load_const_verbatim_quoted_str, emit_native_load_const_verbatim_end, emit_native_load_fast, emit_native_load_name, emit_native_load_global, emit_native_load_deref, emit_native_load_closure, emit_native_load_attr, emit_native_load_method, emit_native_load_build_class, emit_native_store_fast, emit_native_store_name, emit_native_store_global, emit_native_store_deref, emit_native_store_attr, emit_native_store_subscr, emit_native_store_locals, emit_native_delete_fast, emit_native_delete_name, emit_native_delete_global, emit_native_delete_deref, emit_native_delete_attr, emit_native_delete_subscr, emit_native_dup_top, emit_native_dup_top_two, emit_native_pop_top, emit_native_rot_two, emit_native_rot_three, emit_native_jump, emit_native_pop_jump_if_true, emit_native_pop_jump_if_false, emit_native_jump_if_true_or_pop, emit_native_jump_if_false_or_pop, emit_native_setup_loop, emit_native_break_loop, emit_native_continue_loop, emit_native_setup_with, emit_native_with_cleanup, emit_native_setup_except, emit_native_setup_finally, emit_native_end_finally, emit_native_get_iter, emit_native_for_iter, emit_native_for_iter_end, emit_native_pop_block, emit_native_pop_except, emit_native_unary_op, emit_native_binary_op, emit_native_compare_op, emit_native_build_tuple, emit_native_build_list, emit_native_list_append, emit_native_build_map, emit_native_store_map, emit_native_map_add, emit_native_build_set, emit_native_set_add, emit_native_build_slice, emit_native_unpack_sequence, emit_native_unpack_ex, emit_native_make_function, emit_native_make_closure, emit_native_call_function, emit_native_call_method, emit_native_return_value, emit_native_raise_varargs, emit_native_yield_value, emit_native_yield_from, }; #endif // N_X64 || N_THUMB