/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 hathach for Adafruit Industries * Copyright (c) 2018 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "supervisor/spi_flash_api.h" #include #include #include "py/mpconfig.h" // for EXTERNAL_FLASH_QSPI_DUAL //#include "nrfx_qspi.h" //#include "shared-bindings/microcontroller/__init__.h" #include "supervisor/shared/external_flash/common_commands.h" #include "supervisor/shared/external_flash/qspi_flash.h" bool spi_flash_command(uint8_t command) { // nrf_qspi_cinstr_conf_t cinstr_cfg = { // .opcode = command, // .length = 1, // .io2_level = true, // .io3_level = true, // .wipwait = false, // .wren = false // }; return false; //nrfx_qspi_cinstr_xfer(&cinstr_cfg, NULL, NULL) == NRFX_SUCCESS; } bool spi_flash_read_command(uint8_t command, uint8_t* response, uint32_t length) { // nrf_qspi_cinstr_conf_t cinstr_cfg = { // .opcode = command, // .length = length + 1, // .io2_level = true, // .io3_level = true, // .wipwait = false, // .wren = false // }; // return nrfx_qspi_cinstr_xfer(&cinstr_cfg, NULL, response) == NRFX_SUCCESS; return false; } bool spi_flash_write_command(uint8_t command, uint8_t* data, uint32_t length) { // nrf_qspi_cinstr_conf_t cinstr_cfg = { // .opcode = command, // .length = length + 1, // .io2_level = true, // .io3_level = true, // .wipwait = false, // .wren = false // We do this manually. // }; // return nrfx_qspi_cinstr_xfer(&cinstr_cfg, data, NULL) == NRFX_SUCCESS; return false; } bool spi_flash_sector_command(uint8_t command, uint32_t address) { // if (command != CMD_SECTOR_ERASE) { // return false; // } // return nrfx_qspi_erase(NRF_QSPI_ERASE_LEN_4KB, address) == NRFX_SUCCESS; return false; } bool spi_flash_write_data(uint32_t address, uint8_t* data, uint32_t length) { // return nrfx_qspi_write(data, length, address) == NRFX_SUCCESS; return false; } bool spi_flash_read_data(uint32_t address, uint8_t* data, uint32_t length) { // return nrfx_qspi_read(data, length, address) == NRFX_SUCCESS; return false; } void spi_flash_init(void) { // Init QSPI flash // nrfx_qspi_config_t qspi_cfg = { // .xip_offset = 0, // .pins = { // .sck_pin = MICROPY_QSPI_SCK, // .csn_pin = MICROPY_QSPI_CS, // .io0_pin = MICROPY_QSPI_DATA0, // .io1_pin = NRF_QSPI_PIN_NOT_CONNECTED, // .io2_pin = NRF_QSPI_PIN_NOT_CONNECTED, // .io3_pin = NRF_QSPI_PIN_NOT_CONNECTED, // }, // .prot_if = { // .readoc = NRF_QSPI_READOC_FASTREAD, // .writeoc = NRF_QSPI_WRITEOC_PP, // .addrmode = NRF_QSPI_ADDRMODE_24BIT, // .dpmconfig = false // }, // .phy_if = { // .sck_freq = NRF_QSPI_FREQ_32MDIV16, // Start at a slow 2MHz and speed up once we know what we're talking to. // .sck_delay = 10, // min time CS must stay high before going low again. in unit of 62.5 ns // .spi_mode = NRF_QSPI_MODE_0, // .dpmen = false // }, // .irq_priority = 7, // }; // #if EXTERNAL_FLASH_QSPI_DUAL // qspi_cfg.pins.io1_pin = MICROPY_QSPI_DATA1; // qspi_cfg.prot_if.readoc = NRF_QSPI_READOC_READ2O; // qspi_cfg.prot_if.writeoc = NRF_QSPI_WRITEOC_PP2O; // #else // qspi_cfg.pins.io1_pin = MICROPY_QSPI_DATA1; // qspi_cfg.pins.io2_pin = MICROPY_QSPI_DATA2; // qspi_cfg.pins.io3_pin = MICROPY_QSPI_DATA3; // qspi_cfg.prot_if.readoc = NRF_QSPI_READOC_READ4IO; // qspi_cfg.prot_if.writeoc = NRF_QSPI_WRITEOC_PP4O; // #endif // // No callback for blocking API // nrfx_qspi_init(&qspi_cfg, NULL, NULL); } void spi_flash_init_device(const external_flash_device* device) { // check_quad_enable(device); // // Switch to single output line if the device doesn't support quad programs. // if (!device->supports_qspi_writes) { // NRF_QSPI->IFCONFIG0 &= ~QSPI_IFCONFIG0_WRITEOC_Msk; // NRF_QSPI->IFCONFIG0 |= QSPI_IFCONFIG0_WRITEOC_PP << QSPI_IFCONFIG0_WRITEOC_Pos; // } // // Speed up as much as we can. // // Start at 16 MHz and go down. // // At 32 MHz GD25Q16C doesn't work reliably on Feather 52840, even though it should work up to 104 MHz. // // sckfreq = 0 is 32 Mhz // // sckfreq = 1 is 16 MHz, etc. // uint8_t sckfreq = 1; // while (32000000 / (sckfreq + 1) > device->max_clock_speed_mhz * 1000000 && sckfreq < 16) { // sckfreq += 1; // } // NRF_QSPI->IFCONFIG1 &= ~QSPI_IFCONFIG1_SCKFREQ_Msk; // NRF_QSPI->IFCONFIG1 |= sckfreq << QSPI_IFCONFIG1_SCKFREQ_Pos; }