/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/runtime.h" #include "timer.h" #include "dac.h" #include "dma.h" #include "pin.h" /// \moduleref pyb /// \class DAC - digital to analog conversion /// /// The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6. /// The voltage will be between 0 and 3.3V. /// /// *This module will undergo changes to the API.* /// /// Example usage: /// /// from pyb import DAC /// /// dac = DAC(1) # create DAC 1 on pin X5 /// dac.write(128) # write a value to the DAC (makes X5 1.65V) /// /// To output a continuous sine-wave: /// /// import math /// from pyb import DAC /// /// # create a buffer containing a sine-wave /// buf = bytearray(100) /// for i in range(len(buf)): /// buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf))) /// /// # output the sine-wave at 400Hz /// dac = DAC(1) /// dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR) #if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC STATIC DAC_HandleTypeDef DAC_Handle; void dac_init(void) { memset(&DAC_Handle, 0, sizeof DAC_Handle); DAC_Handle.Instance = DAC; DAC_Handle.State = HAL_DAC_STATE_RESET; HAL_DAC_Init(&DAC_Handle); } #if defined(TIM6) STATIC void TIM6_Config(uint freq) { // Init TIM6 at the required frequency (in Hz) TIM_HandleTypeDef *tim = timer_tim6_init(freq); // TIM6 TRGO selection TIM_MasterConfigTypeDef config; config.MasterOutputTrigger = TIM_TRGO_UPDATE; config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(tim, &config); // TIM6 start counter HAL_TIM_Base_Start(tim); } #endif STATIC uint32_t TIMx_Config(mp_obj_t timer) { // TRGO selection to trigger DAC TIM_HandleTypeDef *tim = pyb_timer_get_handle(timer); TIM_MasterConfigTypeDef config; config.MasterOutputTrigger = TIM_TRGO_UPDATE; config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(tim, &config); // work out the trigger channel (only certain ones are supported) if (tim->Instance == TIM2) { return DAC_TRIGGER_T2_TRGO; } else if (tim->Instance == TIM4) { return DAC_TRIGGER_T4_TRGO; } else if (tim->Instance == TIM5) { return DAC_TRIGGER_T5_TRGO; #if defined(TIM6) } else if (tim->Instance == TIM6) { return DAC_TRIGGER_T6_TRGO; #endif #if defined(TIM7) } else if (tim->Instance == TIM7) { return DAC_TRIGGER_T7_TRGO; #endif #if defined(TIM8) } else if (tim->Instance == TIM8) { return DAC_TRIGGER_T8_TRGO; #endif } else { mp_raise_ValueError("Timer does not support DAC triggering"); } } /******************************************************************************/ // MicroPython bindings typedef enum { DAC_STATE_RESET, DAC_STATE_WRITE_SINGLE, DAC_STATE_BUILTIN_WAVEFORM, DAC_STATE_DMA_WAVEFORM, // should be last enum since we use space beyond it } pyb_dac_state_t; typedef struct _pyb_dac_obj_t { mp_obj_base_t base; uint32_t dac_channel; // DAC_CHANNEL_1 or DAC_CHANNEL_2 const dma_descr_t *tx_dma_descr; uint16_t pin; // GPIO_PIN_4 or GPIO_PIN_5 uint8_t bits; // 8 or 12 uint8_t state; } pyb_dac_obj_t; STATIC mp_obj_t pyb_dac_init_helper(pyb_dac_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // GPIO configuration GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = self->pin; GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; GPIO_InitStructure.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); // DAC peripheral clock #if defined(STM32F4) || defined(STM32F7) __DAC_CLK_ENABLE(); #elif defined(STM32L4) __HAL_RCC_DAC1_CLK_ENABLE(); #else #error Unsupported Processor #endif // stop anything already going on __DMA1_CLK_ENABLE(); DMA_HandleTypeDef DMA_Handle; /* Get currently configured dma */ dma_init_handle(&DMA_Handle, self->tx_dma_descr, (void*)NULL); // Need to deinit DMA first DMA_Handle.State = HAL_DMA_STATE_READY; HAL_DMA_DeInit(&DMA_Handle); HAL_DAC_Stop(&DAC_Handle, self->dac_channel); if ((self->dac_channel == DAC_CHANNEL_1 && DAC_Handle.DMA_Handle1 != NULL) || (self->dac_channel == DAC_CHANNEL_2 && DAC_Handle.DMA_Handle2 != NULL)) { HAL_DAC_Stop_DMA(&DAC_Handle, self->dac_channel); } // set bit resolution if (args[0].u_int == 8 || args[0].u_int == 12) { self->bits = args[0].u_int; } else { mp_raise_ValueError("unsupported bits"); } // reset state of DAC self->state = DAC_STATE_RESET; return mp_const_none; } // create the dac object // currently support either DAC1 on X5 (id = 1) or DAC2 on X6 (id = 2) /// \classmethod \constructor(port) /// Construct a new DAC object. /// /// `port` can be a pin object, or an integer (1 or 2). /// DAC(1) is on pin X5 and DAC(2) is on pin X6. STATIC mp_obj_t pyb_dac_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // get pin/channel to output on mp_int_t dac_id; if (MP_OBJ_IS_INT(args[0])) { dac_id = mp_obj_get_int(args[0]); } else { const pin_obj_t *pin = pin_find(args[0]); if (pin == pin_A4) { dac_id = 1; } else if (pin == pin_A5) { dac_id = 2; } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Pin(%q) doesn't have DAC capabilities", pin->name)); } } pyb_dac_obj_t *dac = m_new_obj(pyb_dac_obj_t); dac->base.type = &pyb_dac_type; if (dac_id == 1) { dac->pin = GPIO_PIN_4; dac->dac_channel = DAC_CHANNEL_1; dac->tx_dma_descr = &dma_DAC_1_TX; } else if (dac_id == 2) { dac->pin = GPIO_PIN_5; dac->dac_channel = DAC_CHANNEL_2; dac->tx_dma_descr = &dma_DAC_2_TX; } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "DAC(%d) doesn't exist", dac_id)); } // configure the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_dac_init_helper(dac, n_args - 1, args + 1, &kw_args); // return object return dac; } STATIC mp_obj_t pyb_dac_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_dac_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_init_obj, 1, pyb_dac_init); /// \method deinit() /// Turn off the DAC, enable other use of pin. STATIC mp_obj_t pyb_dac_deinit(mp_obj_t self_in) { pyb_dac_obj_t *self = self_in; if (self->dac_channel == DAC_CHANNEL_1) { DAC_Handle.Instance->CR &= ~DAC_CR_EN1; DAC_Handle.Instance->CR |= DAC_CR_BOFF1; } else { DAC_Handle.Instance->CR &= ~DAC_CR_EN2; DAC_Handle.Instance->CR |= DAC_CR_BOFF2; } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_dac_deinit_obj, pyb_dac_deinit); #if defined(TIM6) /// \method noise(freq) /// Generate a pseudo-random noise signal. A new random sample is written /// to the DAC output at the given frequency. STATIC mp_obj_t pyb_dac_noise(mp_obj_t self_in, mp_obj_t freq) { pyb_dac_obj_t *self = self_in; // set TIM6 to trigger the DAC at the given frequency TIM6_Config(mp_obj_get_int(freq)); if (self->state != DAC_STATE_BUILTIN_WAVEFORM) { // configure DAC to trigger via TIM6 DAC_ChannelConfTypeDef config; config.DAC_Trigger = DAC_TRIGGER_T6_TRGO; config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); self->state = DAC_STATE_BUILTIN_WAVEFORM; } // set noise wave generation HAL_DACEx_NoiseWaveGenerate(&DAC_Handle, self->dac_channel, DAC_LFSRUNMASK_BITS10_0); HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_L, 0x7ff0); HAL_DAC_Start(&DAC_Handle, self->dac_channel); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_noise_obj, pyb_dac_noise); #endif #if defined(TIM6) /// \method triangle(freq) /// Generate a triangle wave. The value on the DAC output changes at /// the given frequency, and the frequence of the repeating triangle wave /// itself is 256 (or 1024, need to check) times smaller. STATIC mp_obj_t pyb_dac_triangle(mp_obj_t self_in, mp_obj_t freq) { pyb_dac_obj_t *self = self_in; // set TIM6 to trigger the DAC at the given frequency TIM6_Config(mp_obj_get_int(freq)); if (self->state != DAC_STATE_BUILTIN_WAVEFORM) { // configure DAC to trigger via TIM6 DAC_ChannelConfTypeDef config; config.DAC_Trigger = DAC_TRIGGER_T6_TRGO; config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); self->state = DAC_STATE_BUILTIN_WAVEFORM; } // set triangle wave generation HAL_DACEx_TriangleWaveGenerate(&DAC_Handle, self->dac_channel, DAC_TRIANGLEAMPLITUDE_1023); HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_R, 0x100); HAL_DAC_Start(&DAC_Handle, self->dac_channel); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_triangle_obj, pyb_dac_triangle); #endif /// \method write(value) /// Direct access to the DAC output (8 bit only at the moment). STATIC mp_obj_t pyb_dac_write(mp_obj_t self_in, mp_obj_t val) { pyb_dac_obj_t *self = self_in; if (self->state != DAC_STATE_WRITE_SINGLE) { DAC_ChannelConfTypeDef config; config.DAC_Trigger = DAC_TRIGGER_NONE; config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE; HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); self->state = DAC_STATE_WRITE_SINGLE; } // DAC output is always 12-bit at the hardware level, and we provide support // for multiple bit "resolutions" simply by shifting the input value. HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_R, mp_obj_get_int(val) << (12 - self->bits)); HAL_DAC_Start(&DAC_Handle, self->dac_channel); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_write_obj, pyb_dac_write); #if defined(TIM6) /// \method write_timed(data, freq, *, mode=DAC.NORMAL) /// Initiates a burst of RAM to DAC using a DMA transfer. /// The input data is treated as an array of bytes (8 bit data). /// /// `freq` can be an integer specifying the frequency to write the DAC /// samples at, using Timer(6). Or it can be an already-initialised /// Timer object which is used to trigger the DAC sample. Valid timers /// are 2, 4, 5, 6, 7 and 8. /// /// `mode` can be `DAC.NORMAL` or `DAC.CIRCULAR`. /// // TODO add callback argument, to call when transfer is finished // TODO add double buffer argument // // TODO reconsider API, eg: write_trig(data, *, trig=None, loop=False) // Then trigger can be timer (preinitialised with desired freq) or pin (extint9), // and we can reuse the same timer for both DACs (and maybe also ADC) without // setting the freq twice. // Can still do 1-liner: dac.write_trig(buf, trig=Timer(6, freq=100), loop=True) mp_obj_t pyb_dac_write_timed(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_freq, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DMA_NORMAL} }, }; // parse args pyb_dac_obj_t *self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get the data to write mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[0].u_obj, &bufinfo, MP_BUFFER_READ); uint32_t dac_trigger; if (mp_obj_is_integer(args[1].u_obj)) { // set TIM6 to trigger the DAC at the given frequency TIM6_Config(mp_obj_get_int(args[1].u_obj)); dac_trigger = DAC_TRIGGER_T6_TRGO; } else { // set the supplied timer to trigger the DAC (timer should be initialised) dac_trigger = TIMx_Config(args[1].u_obj); } __DMA1_CLK_ENABLE(); DMA_HandleTypeDef DMA_Handle; /* Get currently configured dma */ dma_init_handle(&DMA_Handle, self->tx_dma_descr, (void*)NULL); /* DMA_Cmd(DMA_Handle->Instance, DISABLE); while (DMA_GetCmdStatus(DMA_Handle->Instance) != DISABLE) { } DAC_Cmd(self->dac_channel, DISABLE); */ /* // DAC channel configuration DAC_InitTypeDef DAC_InitStructure; DAC_InitStructure.DAC_Trigger = DAC_Trigger_T7_TRGO; DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None; DAC_InitStructure.DAC_LFSRUnmask_TriangleAmplitude = DAC_TriangleAmplitude_1; // unused, but need to set it to a valid value DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; DAC_Init(self->dac_channel, &DAC_InitStructure); */ // Need to deinit DMA first DMA_Handle.State = HAL_DMA_STATE_READY; HAL_DMA_DeInit(&DMA_Handle); if (self->bits == 8) { DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; DMA_Handle.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; } else { DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; DMA_Handle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; } DMA_Handle.Init.Mode = args[2].u_int; HAL_DMA_Init(&DMA_Handle); if (self->dac_channel == DAC_CHANNEL_1) { __HAL_LINKDMA(&DAC_Handle, DMA_Handle1, DMA_Handle); } else { __HAL_LINKDMA(&DAC_Handle, DMA_Handle2, DMA_Handle); } DAC_Handle.Instance = DAC; DAC_Handle.State = HAL_DAC_STATE_RESET; HAL_DAC_Init(&DAC_Handle); if (self->state != DAC_STATE_DMA_WAVEFORM + dac_trigger) { DAC_ChannelConfTypeDef config; config.DAC_Trigger = dac_trigger; config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); self->state = DAC_STATE_DMA_WAVEFORM + dac_trigger; } if (self->bits == 8) { HAL_DAC_Start_DMA(&DAC_Handle, self->dac_channel, (uint32_t*)bufinfo.buf, bufinfo.len, DAC_ALIGN_8B_R); } else { HAL_DAC_Start_DMA(&DAC_Handle, self->dac_channel, (uint32_t*)bufinfo.buf, bufinfo.len / 2, DAC_ALIGN_12B_R); } /* // enable DMA stream DMA_Cmd(DMA_Handle->Instance, ENABLE); while (DMA_GetCmdStatus(DMA_Handle->Instance) == DISABLE) { } // enable DAC channel DAC_Cmd(self->dac_channel, ENABLE); // enable DMA for DAC channel DAC_DMACmd(self->dac_channel, ENABLE); */ //printf("DMA: %p %lu\n", bufinfo.buf, bufinfo.len); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_write_timed_obj, 1, pyb_dac_write_timed); #endif STATIC const mp_rom_map_elem_t pyb_dac_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_dac_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_dac_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&pyb_dac_write_obj) }, #if defined(TIM6) { MP_ROM_QSTR(MP_QSTR_noise), MP_ROM_PTR(&pyb_dac_noise_obj) }, { MP_ROM_QSTR(MP_QSTR_triangle), MP_ROM_PTR(&pyb_dac_triangle_obj) }, { MP_ROM_QSTR(MP_QSTR_write_timed), MP_ROM_PTR(&pyb_dac_write_timed_obj) }, #endif // class constants { MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(DMA_NORMAL) }, { MP_ROM_QSTR(MP_QSTR_CIRCULAR), MP_ROM_INT(DMA_CIRCULAR) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_dac_locals_dict, pyb_dac_locals_dict_table); const mp_obj_type_t pyb_dac_type = { { &mp_type_type }, .name = MP_QSTR_DAC, .make_new = pyb_dac_make_new, .locals_dict = (mp_obj_dict_t*)&pyb_dac_locals_dict, }; #endif // MICROPY_HW_ENABLE_DAC