/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 hathach for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "tusb.h" // // #include "supervisor/flash.h" // For updating fatfs's cache #include "extmod/vfs.h" #include "extmod/vfs_fat.h" #include "lib/oofatfs/diskio.h" #include "lib/oofatfs/ff.h" #include "py/mpstate.h" #include "shared-module/storage/__init__.h" #include "supervisor/filesystem.h" #include "supervisor/shared/autoreload.h" #define MSC_FLASH_BLOCK_SIZE 512 static bool ejected[1] = {true}; // Lock to track if something else is using the filesystem when USB is plugged in. If so, the drive // will be made available once the lock is released. static bool _usb_msc_lock = false; static bool _usb_connected_while_locked = false; STATIC void _usb_msc_uneject(void) { for (uint8_t i = 0; i < sizeof(ejected); i++) { ejected[i] = false; } } void usb_msc_mount(void) { // Reset the ejection tracking every time we're plugged into USB. This allows for us to battery // power the device, eject, unplug and plug it back in to get the drive. if (_usb_msc_lock) { _usb_connected_while_locked = true; return; } _usb_msc_uneject(); _usb_connected_while_locked = false; } void usb_msc_umount(void) { } bool usb_msc_ejected(void) { bool all_ejected = true; for (uint8_t i = 0; i < sizeof(ejected); i++) { all_ejected &= ejected[i]; } return all_ejected; } bool usb_msc_lock(void) { if ((storage_usb_enabled() && !usb_msc_ejected()) || _usb_msc_lock) { return false; } _usb_msc_lock = true; return true; } void usb_msc_unlock(void) { if (!_usb_msc_lock) { // Mismatched unlock. return; } if (_usb_connected_while_locked) { _usb_msc_uneject(); } _usb_msc_lock = false; } // The root FS is always at the end of the list. static fs_user_mount_t *get_vfs(int lun) { // TODO(tannewt): Return the mount which matches the lun where 0 is the end // and is counted in reverse. if (lun > 0) { return NULL; } mp_vfs_mount_t *current_mount = MP_STATE_VM(vfs_mount_table); if (current_mount == NULL) { return NULL; } while (current_mount->next != NULL) { current_mount = current_mount->next; } return current_mount->obj; } // Callback invoked when received an SCSI command not in built-in list below // - READ_CAPACITY10, READ_FORMAT_CAPACITY, INQUIRY, TEST_UNIT_READY, START_STOP_UNIT, MODE_SENSE6, REQUEST_SENSE // - READ10 and WRITE10 have their own callbacks int32_t tud_msc_scsi_cb(uint8_t lun, const uint8_t scsi_cmd[16], void *buffer, uint16_t bufsize) { const void *response = NULL; int32_t resplen = 0; switch (scsi_cmd[0]) { case SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL: // Host is about to read/write etc ... better not to disconnect disk resplen = 0; break; default: // Set Sense = Invalid Command Operation tud_msc_set_sense(lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // negative means error -> tinyusb could stall and/or response with failed status resplen = -1; break; } // return len must not larger than bufsize if (resplen > bufsize) { resplen = bufsize; } // copy response to stack's buffer if any if (response && (resplen > 0)) { memcpy(buffer, response, resplen); } return resplen; } void tud_msc_capacity_cb(uint8_t lun, uint32_t *block_count, uint16_t *block_size) { fs_user_mount_t *vfs = get_vfs(lun); disk_ioctl(vfs, GET_SECTOR_COUNT, block_count); disk_ioctl(vfs, GET_SECTOR_SIZE, block_size); } bool tud_msc_is_writable_cb(uint8_t lun) { if (lun > 1) { return false; } fs_user_mount_t *vfs = get_vfs(lun); if (vfs == NULL) { return false; } if (vfs->blockdev.writeblocks[0] == MP_OBJ_NULL || !filesystem_is_writable_by_usb(vfs)) { return false; } return true; } // Callback invoked when received READ10 command. // Copy disk's data to buffer (up to bufsize) and return number of copied bytes. int32_t tud_msc_read10_cb(uint8_t lun, uint32_t lba, uint32_t offset, void *buffer, uint32_t bufsize) { (void)lun; (void)offset; const uint32_t block_count = bufsize / MSC_FLASH_BLOCK_SIZE; fs_user_mount_t *vfs = get_vfs(lun); disk_read(vfs, buffer, lba, block_count); return block_count * MSC_FLASH_BLOCK_SIZE; } // Callback invoked when received WRITE10 command. // Process data in buffer to disk's storage and return number of written bytes int32_t tud_msc_write10_cb(uint8_t lun, uint32_t lba, uint32_t offset, uint8_t *buffer, uint32_t bufsize) { (void)lun; (void)offset; const uint32_t block_count = bufsize / MSC_FLASH_BLOCK_SIZE; fs_user_mount_t *vfs = get_vfs(lun); disk_write(vfs, buffer, lba, block_count); // Since by getting here we assume the mount is read-only to // MicroPython let's update the cached FatFs sector if it's the one // we just wrote. #if FF_MAX_SS != FF_MIN_SS if (vfs->ssize == MSC_FLASH_BLOCK_SIZE) { #else // The compiler can optimize this away. if (FF_MAX_SS == FILESYSTEM_BLOCK_SIZE) { #endif if (lba == vfs->fatfs.winsect && lba > 0) { memcpy(vfs->fatfs.win, buffer + MSC_FLASH_BLOCK_SIZE * (vfs->fatfs.winsect - lba), MSC_FLASH_BLOCK_SIZE); } } return block_count * MSC_FLASH_BLOCK_SIZE; } // Callback invoked when WRITE10 command is completed (status received and accepted by host). // used to flush any pending cache. void tud_msc_write10_complete_cb(uint8_t lun) { (void)lun; // This write is complete, start the autoreload clock. autoreload_start(); } // Invoked when received SCSI_CMD_INQUIRY // Application fill vendor id, product id and revision with string up to 8, 16, 4 characters respectively void tud_msc_inquiry_cb(uint8_t lun, uint8_t vendor_id[8], uint8_t product_id[16], uint8_t product_rev[4]) { (void)lun; memcpy(vendor_id, CFG_TUD_MSC_VENDOR, strlen(CFG_TUD_MSC_VENDOR)); memcpy(product_id, CFG_TUD_MSC_PRODUCT, strlen(CFG_TUD_MSC_PRODUCT)); memcpy(product_rev, CFG_TUD_MSC_PRODUCT_REV, strlen(CFG_TUD_MSC_PRODUCT_REV)); } // Invoked when received Test Unit Ready command. // return true allowing host to read/write this LUN e.g SD card inserted bool tud_msc_test_unit_ready_cb(uint8_t lun) { if (lun > 1) { return false; } fs_user_mount_t *current_mount = get_vfs(lun); if (current_mount == NULL) { return false; } if (ejected[lun]) { // Set 0x3a for media not present. tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x3A, 0x00); return false; } return true; } // Invoked when received Start Stop Unit command // - Start = 0 : stopped power mode, if load_eject = 1 : unload disk storage // - Start = 1 : active mode, if load_eject = 1 : load disk storage bool tud_msc_start_stop_cb(uint8_t lun, uint8_t power_condition, bool start, bool load_eject) { if (lun > 1) { return false; } fs_user_mount_t *current_mount = get_vfs(lun); if (current_mount == NULL) { return false; } if (load_eject) { if (!start) { // Eject but first flush. if (disk_ioctl(current_mount, CTRL_SYNC, NULL) != RES_OK) { return false; } else { ejected[lun] = true; } } else { // We can only load if it hasn't been ejected. return !ejected[lun]; } } else { if (!start) { // Stop the unit but don't eject. if (disk_ioctl(current_mount, CTRL_SYNC, NULL) != RES_OK) { return false; } } // Always start the unit, even if ejected. Whether media is present is a separate check. } return true; }