/* * The MIT License (MIT) * * Copyright (c) 2021,2022 Renesas Electronics Corporation * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hal_data.h" #include "ra_config.h" #include "ra_gpio.h" #include "ra_utils.h" #include "ra_spi.h" #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Wunused-parameter" #pragma GCC diagnostic ignored "-Wconversion" // #pragma GCC diagnostic ignored "-Wshift-negative-value" // #pragma GCC diagnostic ignored "-Wunused-but-set-variable" // #pragma GCC diagnostic ignored "-Wsequence-point" // #pragma GCC diagnostic ignored "-Wunused-function" #endif static R_SPI0_Type *spi_regs[] = { (R_SPI0_Type *)0x40072000, (R_SPI0_Type *)0x40072100, }; static const ra_af_pin_t mosi_pins[] = { #if defined(RA4M1) { AF_SPI, 0, P101 }, /* MOSIA */ { AF_SPI, 0, P411 }, /* MOSIA */ { AF_SPI, 1, P109 }, /* MOSIB */ { AF_SPI, 1, P203 }, /* MOSIB */ #elif defined(RA4W1) { AF_SPI, 0, P101 }, /* MOSIA */ { AF_SPI, 1, P109 }, /* MOSIB */ #elif defined(RA6M1) { AF_SPI, 0, P101 }, /* MOSIA_A */ { AF_SPI, 0, P411 }, /* MOSIA_B */ { AF_SPI, 1, P109 }, /* MOSIB_B */ #elif defined(RA6M2) { AF_SPI, 0, P101 }, /* MOSIA_A */ { AF_SPI, 0, P411 }, /* MOSIA_B */ { AF_SPI, 1, P109 }, /* MOSIB_B */ { AF_SPI, 1, P203 }, /* MOSIB_A */ { AF_SPI, 1, P701 }, /* MOSIB_C */ #else #error "CMSIS MCU Series is not specified." #endif }; #define MOSI_PINS_SIZE sizeof(mosi_pins) / sizeof(ra_af_pin_t) static const ra_af_pin_t miso_pins[] = { #if defined(RA4M1) { AF_SPI, 0, P100 }, /* MISOA */ { AF_SPI, 0, P410 }, /* MISOA */ { AF_SPI, 1, P110 }, /* MISOB */ { AF_SPI, 1, P202 }, /* MISOB */ #elif defined(RA4W1) { AF_SPI, 0, P100 }, /* MISOA */ { AF_SPI, 1, P110 }, /* MISOB */ #elif defined(RA6M1) { AF_SPI, 0, P100 }, /* MISOA_A */ { AF_SPI, 0, P410 }, /* MISOA_B */ { AF_SPI, 1, P110 }, /* MISOB_B */ #elif defined(RA6M2) { AF_SPI, 0, P100 }, /* MISOA_A */ { AF_SPI, 0, P410 }, /* MISOA_B */ { AF_SPI, 1, P110 }, /* MISOB_B */ { AF_SPI, 1, P202 }, /* MISOB_A */ { AF_SPI, 1, P700 }, /* MISOB_C */ #else #error "CMSIS MCU Series is not specified." #endif }; #define MISO_PINS_SIZE sizeof(miso_pins) / sizeof(ra_af_pin_t) static const ra_af_pin_t sck_pins[] = { #if defined(RA4M1) { AF_SPI, 0, P102 }, /* RSPCKA */ { AF_SPI, 0, P412 }, /* RSPCKA */ { AF_SPI, 1, P111 }, /* RSPCKB */ { AF_SPI, 1, P204 }, /* RSPCKB */ #elif defined(RA4W1) { AF_SPI, 0, P102 }, /* RSPCKA */ { AF_SPI, 1, P111 }, /* RSPCKB */ #elif defined(RA6M1) { AF_SPI, 0, P102 }, /* RSPCKA_A */ { AF_SPI, 0, P412 }, /* RSPCKA_B */ { AF_SPI, 1, P111 }, /* RSPCKB_B */ #elif defined(RA6M2) { AF_SPI, 0, P102 }, /* RSPCKA_A */ { AF_SPI, 0, P412 }, /* RSPCKA_B */ { AF_SPI, 1, P111 }, /* RSPCKB_B */ { AF_SPI, 1, P204 }, /* RSPCKB_A */ { AF_SPI, 1, P702 }, /* RSPCKB_C */ #else #error "CMSIS MCU Series is not specified." #endif }; #define SCK_PINS_SIZE sizeof(sck_pins) / sizeof(ra_af_pin_t) bool ra_af_find_ch(ra_af_pin_t *af_pin, uint32_t size, uint32_t pin, uint8_t *ch) { bool find = false; uint32_t i; for (i = 0; i < size; i++) { if (af_pin->pin == pin) { find = true; *ch = af_pin->ch; break; } af_pin++; } return find; } bool ra_spi_find_af_ch(uint32_t mosi, uint32_t miso, uint32_t sck, uint8_t *ch) { bool find = false; uint8_t mosi_ch; uint8_t miso_ch; uint8_t sck_ch; find = ra_af_find_ch((ra_af_pin_t *)&mosi_pins, MOSI_PINS_SIZE, mosi, &mosi_ch); if (find) { find = ra_af_find_ch((ra_af_pin_t *)&miso_pins, MISO_PINS_SIZE, miso, &miso_ch); if (find) { find = ra_af_find_ch((ra_af_pin_t *)&sck_pins, SCK_PINS_SIZE, sck, &sck_ch); if (find) { find = (mosi_ch == miso_ch) && (miso_ch == sck_ch); if (find) { *ch = mosi_ch; } else { *ch = 0; } } } } return find; } static void ra_spi_module_start(uint32_t ch) { if (ch == 0) { ra_mstpcrb_start(R_MSTP_MSTPCRB_MSTPB19_Msk); } else { ra_mstpcrb_start(R_MSTP_MSTPCRB_MSTPB18_Msk); } } static void ra_spi_module_stop(uint32_t ch) { if (ch == 0) { ra_mstpcrb_stop(R_MSTP_MSTPCRB_MSTPB19_Msk); } else { ra_mstpcrb_stop(R_MSTP_MSTPCRB_MSTPB18_Msk); } } static void ra_spi_set_pin(uint32_t pin, bool miso) { if (miso) { ra_gpio_config(pin, GPIO_MODE_INPUT, 1, 0, AF_SPI); } else { ra_gpio_config(pin, GPIO_MODE_AF_PP, 0, 0, AF_SPI); } } void ra_spi_set_bits(uint32_t ch, uint32_t bits) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; if (bits == 8) { spi_reg->SPDCR_b.SPBYT = 1; spi_reg->SPDCR_b.SPLW = 0; spi_reg->SPCMD_b[0].SPB = 0x7; } else if (bits == 16) { spi_reg->SPDCR_b.SPBYT = 0; spi_reg->SPDCR_b.SPLW = 0; spi_reg->SPCMD_b[0].SPB = 0xf; } else if (bits == 32) { spi_reg->SPDCR_b.SPBYT = 0; spi_reg->SPDCR_b.SPLW = 1; spi_reg->SPCMD_b[0].SPB = 0x3; } } void ra_spi_set_clk(uint32_t ch, uint32_t baud) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; if (baud == 0) { return; } spi_reg->SPCR_b.SPE = 0; spi_reg->SPBR = (PCLK / 2 / baud) - 1; spi_reg->SPCR_b.SPE = 1; } void ra_spi_set_lsb_first(uint32_t ch, uint32_t lsb_first) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; if (lsb_first) { spi_reg->SPCMD_b[0].LSBF = 1; // LSB first } else { spi_reg->SPCMD_b[0].LSBF = 0; // MSB first } } void ra_spi_set_mode(uint32_t ch, uint32_t polarity, uint32_t phase) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; if (polarity != 0) { // CPOL(Clock Polarity) spi_reg->SPCMD_b[0].CPOL = 1; } else { spi_reg->SPCMD_b[0].CPOL = 0; } if (phase != 0) { // CPHA(Clock Phase) spi_reg->SPCMD_b[0].CPHA = 1; } else { spi_reg->SPCMD_b[0].CPHA = 0; } } void ra_spi_set_ch(uint32_t ch) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; spi_reg->SPCR = 0x00; // disable SPI spi_reg->SPSR = 0xa0; spi_reg->SPPCR = 0x00; // fixed idle value, disable loop-back mode spi_reg->SPSCR = 0x00; // Disable sequence control spi_reg->SPDCR = 0x40; // SPBYT=1, SPLW=0 byte access spi_reg->SPCMD[0] = 0xe700; // LSBF=0, SPB=7, BRDV=0, CPOL=0, CPHA=0 spi_reg->SPCR2 = 0x10; spi_reg->SPCR = 0x48; // Start SPI in master mode } uint8_t ra_spi_write_byte(uint32_t ch, uint8_t b) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; while (spi_reg->SPSR_b.SPTEF == 0) { ; } spi_reg->SPDR_BY = (uint8_t)(b); while (spi_reg->SPSR_b.SPRF == 0) { ; } return (uint8_t)(spi_reg->SPDR_BY); } void ra_spi_write_bytes8(uint32_t ch, uint8_t *buf, uint32_t count) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; ra_spi_set_bits(ch, 8); while (count-- > 0) { while (spi_reg->SPSR_b.SPTEF == 0) { ; } spi_reg->SPDR_BY = (uint8_t)(*buf++); while (spi_reg->SPSR_b.SPRF == 0) { ; } spi_reg->SPDR_BY; } } void ra_spi_read_bytes8(uint32_t ch, uint8_t *buf, uint32_t count) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; ra_spi_set_bits(ch, 8); while (count-- > 0) { while (spi_reg->SPSR_b.SPTEF == 0) { ; } spi_reg->SPDR_BY = (uint8_t)(0); while (spi_reg->SPSR_b.SPRF == 0) { ; } *buf++ = (uint8_t)spi_reg->SPDR_BY; } } void ra_spi_write_bytes16(uint32_t ch, uint16_t *buf, uint32_t count) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; ra_spi_set_bits(ch, 16); while (count-- > 0) { while (spi_reg->SPSR_b.SPTEF == 0) { ; } spi_reg->SPDR_HA = (uint16_t)(*buf++); while (spi_reg->SPSR_b.SPRF == 0) { ; } spi_reg->SPDR_HA; } } void ra_spi_write_bytes32(uint32_t ch, uint32_t *buf, uint32_t count) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; ra_spi_set_bits(ch, 32); while (count-- > 0) { while (spi_reg->SPSR_b.SPTEF == 0) { ; } spi_reg->SPDR = (uint32_t)(*buf++); while (spi_reg->SPSR_b.SPRF == 0) { ; } spi_reg->SPDR; } } void ra_spi_write_bytes(uint32_t ch, uint32_t bits, uint8_t *buf, uint32_t count) { if (bits == 8) { ra_spi_write_bytes8(ch, buf, count); } else if (bits == 16) { ra_spi_write_bytes16(ch, (uint16_t *)buf, count >> 1); } else if (bits == 32) { ra_spi_write_bytes32(ch, (uint32_t *)buf, count >> 2); } } void ra_spi_transfer8(uint32_t ch, uint8_t *dst, uint8_t *src, uint32_t count) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; ra_spi_set_bits(ch, 8); while (count-- > 0) { while (spi_reg->SPSR_b.SPTEF == 0) { ; } spi_reg->SPDR_BY = (uint8_t)(*src++); while (spi_reg->SPSR_b.SPRF == 0) { ; } *dst++ = (uint8_t)(spi_reg->SPDR_BY); } } void ra_spi_transfer16(uint32_t ch, uint16_t *dst, uint16_t *src, uint32_t count) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; ra_spi_set_bits(ch, 16); while (count-- > 0) { while (spi_reg->SPSR_b.SPTEF == 0) { ; } spi_reg->SPDR_HA = (uint16_t)(*src++); while (spi_reg->SPSR_b.SPRF == 0) { ; } *dst++ = (uint16_t)(spi_reg->SPDR_HA); } } void ra_spi_transfer32(uint32_t ch, uint32_t *dst, uint32_t *src, uint32_t count) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; ra_spi_set_bits(ch, 32); while (count-- > 0) { while (spi_reg->SPSR_b.SPTEF == 0) { ; } spi_reg->SPDR = (uint32_t)(*src++); while (spi_reg->SPSR_b.SPRF == 0) { ; } *dst++ = (uint32_t)(spi_reg->SPDR); } } void ra_spi_transfer(uint32_t ch, uint32_t bits, uint8_t *dst, uint8_t *src, uint32_t count, uint32_t timeout) { if (bits == 8) { ra_spi_transfer8(ch, dst, src, count); } else if (bits == 16) { ra_spi_transfer16(ch, (uint16_t *)dst, (uint16_t *)src, count >> 1); } else if (bits == 32) { ra_spi_transfer32(ch, (uint32_t *)dst, (uint32_t *)src, count >> 2); } } void ra_spi_start_xfer(uint32_t ch, uint16_t spcmd, uint8_t spbr) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; spi_reg->SPCR_b.SPE = 0; // disable spi_reg->SPCMD[0] = spcmd; spi_reg->SPBR = spbr; spi_reg->SPCR_b.SPE = 1; // enable } void ra_spi_end_xfer(uint32_t ch) { (void)ch; } void ra_spi_get_conf(uint32_t ch, uint16_t *spcmd, uint8_t *spbr) { R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch]; *spcmd = spi_reg->SPCMD[0]; *spbr = spi_reg->SPBR; } void ra_spi_init(uint32_t ch, uint32_t mosi, uint32_t miso, uint32_t sck, uint32_t cs, uint32_t baud, uint32_t bits, uint32_t polarity, uint32_t phase) { ra_gpio_mode_output(cs); ra_gpio_write(cs, 1); ra_spi_module_start(ch); ra_spi_set_pin(mosi, false); ra_spi_set_pin(miso, true); ra_spi_set_pin(sck, false); ra_spi_set_mode(ch, polarity, phase); ra_spi_set_ch(ch); ra_spi_set_clk(ch, baud); ra_spi_set_bits(ch, bits); ra_spi_set_lsb_first(ch, 0); // MSB first return; } void ra_spi_deinit(uint32_t ch, uint32_t cs) { ra_spi_module_stop(ch); } __WEAK void spi_rxi_isr(void) { // dummy } __WEAK void spi_txi_isr(void) { // dummy } __WEAK void spi_tei_isr(void) { // dummy } __WEAK void spi_eri_isr(void) { // dummy }