/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020 Lucian Copeland for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "common-hal/pwmio/PWMOut.h" #include "shared-bindings/pwmio/PWMOut.h" #include "py/runtime.h" #include "components/driver/include/driver/ledc.h" #define INDEX_EMPTY 0xFF STATIC uint32_t reserved_timer_freq[LEDC_TIMER_MAX]; STATIC bool varfreq_timers[LEDC_TIMER_MAX]; STATIC uint8_t reserved_channels[LEDC_CHANNEL_MAX] = { [0 ... LEDC_CHANNEL_MAX - 1] = INDEX_EMPTY}; STATIC bool never_reset_tim[LEDC_TIMER_MAX]; STATIC bool never_reset_chan[LEDC_CHANNEL_MAX]; STATIC uint32_t calculate_duty_cycle(uint32_t frequency) { uint32_t duty_bits = 0; uint32_t interval = LEDC_APB_CLK_HZ / frequency; for (size_t i = 0; i < 32; i++) { if (!(interval >> i)) { duty_bits = i - 1; break; } } if (duty_bits >= LEDC_TIMER_14_BIT) { duty_bits = LEDC_TIMER_13_BIT; } return duty_bits; } void pwmout_reset(void) { for (size_t i = 0; i < LEDC_CHANNEL_MAX; i++) { if (reserved_channels[i] != INDEX_EMPTY) { ledc_stop(LEDC_LOW_SPEED_MODE, i, 0); } if (!never_reset_chan[i]) { reserved_channels[i] = INDEX_EMPTY; } } for (size_t i = 0; i < LEDC_TIMER_MAX; i++) { if (reserved_timer_freq[i]) { ledc_timer_rst(LEDC_LOW_SPEED_MODE, i); } if (!never_reset_tim[i]) { reserved_timer_freq[i] = 0; varfreq_timers[i] = false; } } } pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t *self, const mcu_pin_obj_t *pin, uint16_t duty, uint32_t frequency, bool variable_frequency) { // check the frequency (avoid divide by zero below) if (frequency == 0) { return PWMOUT_INVALID_FREQUENCY; } // Calculate duty cycle uint32_t duty_bits = calculate_duty_cycle(frequency); if (duty_bits == 0) { return PWMOUT_INVALID_FREQUENCY; } // Find a viable timer size_t timer_index = INDEX_EMPTY; size_t channel_index = INDEX_EMPTY; for (size_t i = 0; i < LEDC_TIMER_MAX; i++) { // accept matching freq timers unless this instance is varfreq or a prior one was if ((reserved_timer_freq[i] == frequency) && !variable_frequency && !varfreq_timers[i]) { // prioritize matched frequencies so we don't needlessly take slots timer_index = i; break; } else if (reserved_timer_freq[i] == 0) { timer_index = i; break; } } if (timer_index == INDEX_EMPTY) { // Running out of timers isn't pin related on ESP32S2. return PWMOUT_ALL_TIMERS_IN_USE; } // Find a viable channel for (size_t i = 0; i < LEDC_CHANNEL_MAX; i++) { if (reserved_channels[i] == INDEX_EMPTY) { channel_index = i; break; } } if (channel_index == INDEX_EMPTY) { return PWMOUT_ALL_CHANNELS_IN_USE; } // Run configuration self->tim_handle.timer_num = timer_index; self->tim_handle.duty_resolution = duty_bits; self->tim_handle.freq_hz = frequency; self->tim_handle.speed_mode = LEDC_LOW_SPEED_MODE; self->tim_handle.clk_cfg = LEDC_AUTO_CLK; if (ledc_timer_config(&(self->tim_handle)) != ESP_OK) { return PWMOUT_INITIALIZATION_ERROR; } self->chan_handle.channel = channel_index; self->chan_handle.duty = duty >> (16 - duty_bits); self->chan_handle.gpio_num = pin->number; self->chan_handle.speed_mode = LEDC_LOW_SPEED_MODE; // Only LS is allowed on ESP32-S2 self->chan_handle.hpoint = 0; self->chan_handle.timer_sel = timer_index; if (ledc_channel_config(&(self->chan_handle))) { return PWMOUT_INITIALIZATION_ERROR; } // Make reservations reserved_timer_freq[timer_index] = frequency; reserved_channels[channel_index] = timer_index; if (variable_frequency) { varfreq_timers[timer_index] = true; } self->variable_frequency = variable_frequency; self->pin = pin; self->deinited = false; self->duty_resolution = duty_bits; claim_pin(pin); // Set initial duty common_hal_pwmio_pwmout_set_duty_cycle(self, duty); return PWMOUT_OK; } void common_hal_pwmio_pwmout_never_reset(pwmio_pwmout_obj_t *self) { never_reset_tim[self->tim_handle.timer_num] = true; never_reset_chan[self->chan_handle.channel] = true; never_reset_pin_number(self->pin->number); } void common_hal_pwmio_pwmout_reset_ok(pwmio_pwmout_obj_t *self) { never_reset_tim[self->tim_handle.timer_num] = false; never_reset_chan[self->chan_handle.channel] = false; } bool common_hal_pwmio_pwmout_deinited(pwmio_pwmout_obj_t *self) { return self->deinited == true; } void common_hal_pwmio_pwmout_deinit(pwmio_pwmout_obj_t *self) { if (common_hal_pwmio_pwmout_deinited(self)) { return; } if (reserved_channels[self->chan_handle.channel] != INDEX_EMPTY) { ledc_stop(LEDC_LOW_SPEED_MODE, self->chan_handle.channel, 0); } reserved_channels[self->chan_handle.channel] = INDEX_EMPTY; // Search if any other channel is using the timer bool taken = false; for (size_t i = 0; i < LEDC_CHANNEL_MAX; i++) { if (reserved_channels[i] == self->tim_handle.timer_num) { taken = true; } } // Variable frequency means there's only one channel on the timer if (!taken || self->variable_frequency) { ledc_timer_rst(LEDC_LOW_SPEED_MODE, self->tim_handle.timer_num); reserved_timer_freq[self->tim_handle.timer_num] = 0; // if timer isn't varfreq this will be off aleady varfreq_timers[self->tim_handle.timer_num] = false; } common_hal_reset_pin(self->pin); self->deinited = true; } void common_hal_pwmio_pwmout_set_duty_cycle(pwmio_pwmout_obj_t *self, uint16_t duty) { ledc_set_duty(LEDC_LOW_SPEED_MODE, self->chan_handle.channel, duty >> (16 - self->duty_resolution)); ledc_update_duty(LEDC_LOW_SPEED_MODE, self->chan_handle.channel); } uint16_t common_hal_pwmio_pwmout_get_duty_cycle(pwmio_pwmout_obj_t *self) { return ledc_get_duty(LEDC_LOW_SPEED_MODE, self->chan_handle.channel) << (16 - self->duty_resolution); } void common_hal_pwmio_pwmout_set_frequency(pwmio_pwmout_obj_t *self, uint32_t frequency) { // Calculate duty cycle uint32_t duty_bits = calculate_duty_cycle(frequency); if (duty_bits == 0) { mp_raise_ValueError(translate("Invalid PWM frequency")); } self->duty_resolution = duty_bits; ledc_set_freq(LEDC_LOW_SPEED_MODE, self->tim_handle.timer_num, frequency); } uint32_t common_hal_pwmio_pwmout_get_frequency(pwmio_pwmout_obj_t *self) { return ledc_get_freq(LEDC_LOW_SPEED_MODE, self->tim_handle.timer_num); } bool common_hal_pwmio_pwmout_get_variable_frequency(pwmio_pwmout_obj_t *self) { return self->variable_frequency; } const mcu_pin_obj_t *common_hal_pwmio_pwmout_get_pin(pwmio_pwmout_obj_t *self) { return self->pin; }