/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/ioctl.h" #include "py/nlr.h" #include "py/runtime.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/mphal.h" #include "uart.h" #include "irq.h" #include "genhdr/pins.h" /// \moduleref pyb /// \class UART - duplex serial communication bus /// /// UART implements the standard UART/USART duplex serial communications protocol. At /// the physical level it consists of 2 lines: RX and TX. The unit of communication /// is a character (not to be confused with a string character) which can be 8 or 9 /// bits wide. /// /// UART objects can be created and initialised using: /// /// from pyb import UART /// /// uart = UART(1, 9600) # init with given baudrate /// uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters /// /// Bits can be 8 or 9. Parity can be None, 0 (even) or 1 (odd). Stop can be 1 or 2. /// /// A UART object acts like a stream object and reading and writing is done /// using the standard stream methods: /// /// uart.read(10) # read 10 characters, returns a bytes object /// uart.read() # read all available characters /// uart.readline() # read a line /// uart.readinto(buf) # read and store into the given buffer /// uart.write('abc') # write the 3 characters /// /// Individual characters can be read/written using: /// /// uart.readchar() # read 1 character and returns it as an integer /// uart.writechar(42) # write 1 character /// /// To check if there is anything to be read, use: /// /// uart.any() # returns True if any characters waiting #define CHAR_WIDTH_8BIT (0) #define CHAR_WIDTH_9BIT (1) struct _pyb_uart_obj_t { mp_obj_base_t base; UART_HandleTypeDef uart; // this is 17 words big IRQn_Type irqn; pyb_uart_t uart_id : 8; bool is_enabled : 1; byte char_width; // 0 for 7,8 bit chars, 1 for 9 bit chars uint16_t char_mask; // 0x7f for 7 bit, 0xff for 8 bit, 0x1ff for 9 bit uint16_t timeout; // timeout waiting for first char uint16_t timeout_char; // timeout waiting between chars uint16_t read_buf_len; // len in chars; buf can hold len-1 chars volatile uint16_t read_buf_head; // indexes first empty slot uint16_t read_buf_tail; // indexes first full slot (not full if equals head) byte *read_buf; // byte or uint16_t, depending on char size }; STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in); void uart_init0(void) { for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { MP_STATE_PORT(pyb_uart_obj_all)[i] = NULL; } } // unregister all interrupt sources void uart_deinit(void) { for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) { pyb_uart_obj_t *uart_obj = MP_STATE_PORT(pyb_uart_obj_all)[i]; if (uart_obj != NULL) { pyb_uart_deinit(uart_obj); } } } STATIC bool uart_exists(int uart_id) { if (uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all))) { // safeguard against pyb_uart_obj_all array being configured too small return false; } switch (uart_id) { #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX) case PYB_UART_1: return true; #endif #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX) case PYB_UART_2: return true; #endif #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX) case PYB_UART_3: return true; #endif #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX) case PYB_UART_4: return true; #endif #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX) case PYB_UART_5: return true; #endif #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX) case PYB_UART_6: return true; #endif #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX) case PYB_UART_7: return true; #endif #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX) case PYB_UART_8: return true; #endif default: return false; } } // assumes Init parameters have been set up correctly STATIC bool uart_init2(pyb_uart_obj_t *uart_obj) { USART_TypeDef *UARTx; IRQn_Type irqn; int uart_unit; const pin_obj_t *pins[4] = {0}; switch (uart_obj->uart_id) { #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX) case PYB_UART_1: uart_unit = 1; UARTx = USART1; irqn = USART1_IRQn; pins[0] = &MICROPY_HW_UART1_TX; pins[1] = &MICROPY_HW_UART1_RX; __USART1_CLK_ENABLE(); break; #endif #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX) case PYB_UART_2: uart_unit = 2; UARTx = USART2; irqn = USART2_IRQn; pins[0] = &MICROPY_HW_UART2_TX; pins[1] = &MICROPY_HW_UART2_RX; #if defined(MICROPY_HW_UART2_RTS) if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) { pins[2] = &MICROPY_HW_UART2_RTS; } #endif #if defined(MICROPY_HW_UART2_CTS) if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) { pins[3] = &MICROPY_HW_UART2_CTS; } #endif __USART2_CLK_ENABLE(); break; #endif #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX) case PYB_UART_3: uart_unit = 3; UARTx = USART3; irqn = USART3_IRQn; pins[0] = &MICROPY_HW_UART3_TX; pins[1] = &MICROPY_HW_UART3_RX; #if defined(MICROPY_HW_UART3_RTS) if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) { pins[2] = &MICROPY_HW_UART3_RTS; } #endif #if defined(MICROPY_HW_UART3_CTS) if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) { pins[3] = &MICROPY_HW_UART3_CTS; } #endif __USART3_CLK_ENABLE(); break; #endif #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX) case PYB_UART_4: uart_unit = 4; UARTx = UART4; irqn = UART4_IRQn; pins[0] = &MICROPY_HW_UART4_TX; pins[1] = &MICROPY_HW_UART4_RX; __UART4_CLK_ENABLE(); break; #endif #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX) case PYB_UART_5: uart_unit = 5; UARTx = UART5; irqn = UART5_IRQn; pins[0] = &MICROPY_HW_UART5_TX; pins[1] = &MICROPY_HW_UART5_RX; __UART5_CLK_ENABLE(); break; #endif #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX) case PYB_UART_6: uart_unit = 6; UARTx = USART6; irqn = USART6_IRQn; pins[0] = &MICROPY_HW_UART6_TX; pins[1] = &MICROPY_HW_UART6_RX; __USART6_CLK_ENABLE(); break; #endif #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX) case PYB_UART_7: uart_unit = 7; UARTx = UART7; irqn = UART7_IRQn; pins[0] = &MICROPY_HW_UART7_TX; pins[1] = &MICROPY_HW_UART7_RX; __UART7_CLK_ENABLE(); break; #endif #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX) case PYB_UART_8: uart_unit = 8; UARTx = UART8; irqn = UART8_IRQn; pins[0] = &MICROPY_HW_UART8_TX; pins[1] = &MICROPY_HW_UART8_RX; __UART8_CLK_ENABLE(); break; #endif default: // UART does not exist or is not configured for this board return false; } uint32_t mode = MP_HAL_PIN_MODE_ALT; uint32_t pull = MP_HAL_PIN_PULL_UP; for (uint i = 0; i < 4; i++) { if (pins[i] != NULL) { bool ret = mp_hal_pin_config_alt(pins[i], mode, pull, AF_FN_UART, uart_unit); if (!ret) { return false; } } } uart_obj->irqn = irqn; uart_obj->uart.Instance = UARTx; // init UARTx HAL_UART_Init(&uart_obj->uart); uart_obj->is_enabled = true; return true; } /* obsolete and unused bool uart_init(pyb_uart_obj_t *uart_obj, uint32_t baudrate) { UART_HandleTypeDef *uh = &uart_obj->uart; memset(uh, 0, sizeof(*uh)); uh->Init.BaudRate = baudrate; uh->Init.WordLength = UART_WORDLENGTH_8B; uh->Init.StopBits = UART_STOPBITS_1; uh->Init.Parity = UART_PARITY_NONE; uh->Init.Mode = UART_MODE_TX_RX; uh->Init.HwFlowCtl = UART_HWCONTROL_NONE; uh->Init.OverSampling = UART_OVERSAMPLING_16; return uart_init2(uart_obj); } */ mp_uint_t uart_rx_any(pyb_uart_obj_t *self) { int buffer_bytes = self->read_buf_head - self->read_buf_tail; if (buffer_bytes < 0) { return buffer_bytes + self->read_buf_len; } else if (buffer_bytes > 0) { return buffer_bytes; } else { return __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET; } } // Waits at most timeout milliseconds for at least 1 char to become ready for // reading (from buf or for direct reading). // Returns true if something available, false if not. STATIC bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) { uint32_t start = HAL_GetTick(); for (;;) { if (self->read_buf_tail != self->read_buf_head || __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) { return true; // have at least 1 char ready for reading } if (HAL_GetTick() - start >= timeout) { return false; // timeout } MICROPY_EVENT_POLL_HOOK } } // assumes there is a character available int uart_rx_char(pyb_uart_obj_t *self) { if (self->read_buf_tail != self->read_buf_head) { // buffering via IRQ int data; if (self->char_width == CHAR_WIDTH_9BIT) { data = ((uint16_t*)self->read_buf)[self->read_buf_tail]; } else { data = self->read_buf[self->read_buf_tail]; } self->read_buf_tail = (self->read_buf_tail + 1) % self->read_buf_len; if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) { // UART was stalled by flow ctrl: re-enable IRQ now we have room in buffer __HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE); } return data; } else { // no buffering #if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4) return self->uart.Instance->RDR & self->char_mask; #else return self->uart.Instance->DR & self->char_mask; #endif } } // Waits at most timeout milliseconds for TX register to become empty. // Returns true if can write, false if can't. STATIC bool uart_tx_wait(pyb_uart_obj_t *self, uint32_t timeout) { uint32_t start = HAL_GetTick(); for (;;) { if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) { return true; // tx register is empty } if (HAL_GetTick() - start >= timeout) { return false; // timeout } MICROPY_EVENT_POLL_HOOK } } // Waits at most timeout milliseconds for UART flag to be set. // Returns true if flag is/was set, false on timeout. STATIC bool uart_wait_flag_set(pyb_uart_obj_t *self, uint32_t flag, uint32_t timeout) { // Note: we don't use WFI to idle in this loop because UART tx doesn't generate // an interrupt and the flag can be set quickly if the baudrate is large. uint32_t start = HAL_GetTick(); for (;;) { if (__HAL_UART_GET_FLAG(&self->uart, flag)) { return true; } if (timeout == 0 || HAL_GetTick() - start >= timeout) { return false; // timeout } } } // src - a pointer to the data to send (16-bit aligned for 9-bit chars) // num_chars - number of characters to send (9-bit chars count for 2 bytes from src) // *errcode - returns 0 for success, MP_Exxx on error // returns the number of characters sent (valid even if there was an error) STATIC size_t uart_tx_data(pyb_uart_obj_t *self, const void *src_in, size_t num_chars, int *errcode) { if (num_chars == 0) { *errcode = 0; return 0; } uint32_t timeout; if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) { // CTS can hold off transmission for an arbitrarily long time. Apply // the overall timeout rather than the character timeout. timeout = self->timeout; } else { // The timeout specified here is for waiting for the TX data register to // become empty (ie between chars), as well as for the final char to be // completely transferred. The default value for timeout_char is long // enough for 1 char, but we need to double it to wait for the last char // to be transferred to the data register, and then to be transmitted. timeout = 2 * self->timeout_char; } const uint8_t *src = (const uint8_t*)src_in; size_t num_tx = 0; USART_TypeDef *uart = self->uart.Instance; while (num_tx < num_chars) { if (!uart_wait_flag_set(self, UART_FLAG_TXE, timeout)) { *errcode = MP_ETIMEDOUT; return num_tx; } uint32_t data; if (self->char_width == CHAR_WIDTH_9BIT) { data = *((uint16_t*)src) & 0x1ff; src += 2; } else { data = *src++; } #if defined(MCU_SERIES_F4) uart->DR = data; #else uart->TDR = data; #endif ++num_tx; } // wait for the UART frame to complete if (!uart_wait_flag_set(self, UART_FLAG_TC, timeout)) { *errcode = MP_ETIMEDOUT; return num_tx; } *errcode = 0; return num_tx; } STATIC void uart_tx_char(pyb_uart_obj_t *uart_obj, int c) { uint16_t ch = c; int errcode; uart_tx_data(uart_obj, &ch, 1, &errcode); } void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) { int errcode; uart_tx_data(uart_obj, str, len, &errcode); } void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { if (*str == '\n') { uart_tx_char(uart_obj, '\r'); } uart_tx_char(uart_obj, *str); } } // this IRQ handler is set up to handle RXNE interrupts only void uart_irq_handler(mp_uint_t uart_id) { // get the uart object pyb_uart_obj_t *self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1]; if (self == NULL) { // UART object has not been set, so we can't do anything, not // even disable the IRQ. This should never happen. return; } if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) { if (self->read_buf_len != 0) { uint16_t next_head = (self->read_buf_head + 1) % self->read_buf_len; if (next_head != self->read_buf_tail) { // only read data if room in buf #if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4) int data = self->uart.Instance->RDR; // clears UART_FLAG_RXNE #else int data = self->uart.Instance->DR; // clears UART_FLAG_RXNE #endif data &= self->char_mask; if (self->char_width == CHAR_WIDTH_9BIT) { ((uint16_t*)self->read_buf)[self->read_buf_head] = data; } else { self->read_buf[self->read_buf_head] = data; } self->read_buf_head = next_head; } else { // No room: leave char in buf, disable interrupt __HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE); } } } } /******************************************************************************/ /* MicroPython bindings */ STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_uart_obj_t *self = self_in; if (!self->is_enabled) { mp_printf(print, "UART(%u)", self->uart_id); } else { mp_int_t bits = (self->uart.Init.WordLength == UART_WORDLENGTH_8B ? 8 : 9); if (self->uart.Init.Parity != UART_PARITY_NONE) { bits -= 1; } mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=", self->uart_id, self->uart.Init.BaudRate, bits); if (self->uart.Init.Parity == UART_PARITY_NONE) { mp_print_str(print, "None"); } else { mp_printf(print, "%u", self->uart.Init.Parity == UART_PARITY_EVEN ? 0 : 1); } if (self->uart.Init.HwFlowCtl) { mp_printf(print, ", flow="); if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) { mp_printf(print, "RTS%s", self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS ? "|" : ""); } if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) { mp_printf(print, "CTS"); } } mp_printf(print, ", stop=%u, timeout=%u, timeout_char=%u, read_buf_len=%u)", self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2, self->timeout, self->timeout_char, self->read_buf_len == 0 ? 0 : self->read_buf_len - 1); // -1 to adjust for usable length of buffer } } /// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, flow=0, read_buf_len=64) /// /// Initialise the UART bus with the given parameters: /// /// - `baudrate` is the clock rate. /// - `bits` is the number of bits per byte, 7, 8 or 9. /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). /// - `stop` is the number of stop bits, 1 or 2. /// - `timeout` is the timeout in milliseconds to wait for the first character. /// - `timeout_char` is the timeout in milliseconds to wait between characters. /// - `flow` is RTS | CTS where RTS == 256, CTS == 512 /// - `read_buf_len` is the character length of the read buffer (0 to disable). STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} }, }; // parse args struct { mp_arg_val_t baudrate, bits, parity, stop, flow, timeout, timeout_char, read_buf_len; } args; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, (mp_arg_val_t*)&args); // set the UART configuration values memset(&self->uart, 0, sizeof(self->uart)); UART_InitTypeDef *init = &self->uart.Init; // baudrate init->BaudRate = args.baudrate.u_int; // parity mp_int_t bits = args.bits.u_int; if (args.parity.u_obj == mp_const_none) { init->Parity = UART_PARITY_NONE; } else { mp_int_t parity = mp_obj_get_int(args.parity.u_obj); init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN; bits += 1; // STs convention has bits including parity } // number of bits if (bits == 8) { init->WordLength = UART_WORDLENGTH_8B; } else if (bits == 9) { init->WordLength = UART_WORDLENGTH_9B; } else { mp_raise_ValueError("unsupported combination of bits and parity"); } // stop bits switch (args.stop.u_int) { case 1: init->StopBits = UART_STOPBITS_1; break; default: init->StopBits = UART_STOPBITS_2; break; } // flow control init->HwFlowCtl = args.flow.u_int; // extra config (not yet configurable) init->Mode = UART_MODE_TX_RX; init->OverSampling = UART_OVERSAMPLING_16; // init UART (if it fails, it's because the port doesn't exist) if (!uart_init2(self)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", self->uart_id)); } // set timeout self->timeout = args.timeout.u_int; // set timeout_char // make sure it is at least as long as a whole character (13 bits to be safe) // minimum value is 2ms because sys-tick has a resolution of only 1ms self->timeout_char = args.timeout_char.u_int; uint32_t min_timeout_char = 13000 / init->BaudRate + 2; if (self->timeout_char < min_timeout_char) { self->timeout_char = min_timeout_char; } // setup the read buffer m_del(byte, self->read_buf, self->read_buf_len << self->char_width); if (init->WordLength == UART_WORDLENGTH_9B && init->Parity == UART_PARITY_NONE) { self->char_mask = 0x1ff; self->char_width = CHAR_WIDTH_9BIT; } else { if (init->WordLength == UART_WORDLENGTH_9B || init->Parity == UART_PARITY_NONE) { self->char_mask = 0xff; } else { self->char_mask = 0x7f; } self->char_width = CHAR_WIDTH_8BIT; } self->read_buf_head = 0; self->read_buf_tail = 0; if (args.read_buf_len.u_int <= 0) { // no read buffer self->read_buf_len = 0; self->read_buf = NULL; HAL_NVIC_DisableIRQ(self->irqn); __HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE); } else { // read buffer using interrupts self->read_buf_len = args.read_buf_len.u_int + 1; // +1 to adjust for usable length of buffer self->read_buf = m_new(byte, self->read_buf_len << self->char_width); __HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE); HAL_NVIC_SetPriority(self->irqn, IRQ_PRI_UART, IRQ_SUBPRI_UART); HAL_NVIC_EnableIRQ(self->irqn); } // compute actual baudrate that was configured // (this formula assumes UART_OVERSAMPLING_16) uint32_t actual_baudrate = 0; #if defined(MCU_SERIES_F7) UART_ClockSourceTypeDef clocksource = UART_CLOCKSOURCE_UNDEFINED; UART_GETCLOCKSOURCE(&self->uart, clocksource); switch (clocksource) { case UART_CLOCKSOURCE_PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break; case UART_CLOCKSOURCE_PCLK2: actual_baudrate = HAL_RCC_GetPCLK2Freq(); break; case UART_CLOCKSOURCE_HSI: actual_baudrate = HSI_VALUE; break; case UART_CLOCKSOURCE_SYSCLK: actual_baudrate = HAL_RCC_GetSysClockFreq(); break; case UART_CLOCKSOURCE_LSE: actual_baudrate = LSE_VALUE; break; case UART_CLOCKSOURCE_UNDEFINED: break; } #else if (self->uart.Instance == USART1 #if defined(USART6) || self->uart.Instance == USART6 #endif ) { actual_baudrate = HAL_RCC_GetPCLK2Freq(); } else { actual_baudrate = HAL_RCC_GetPCLK1Freq(); } #endif actual_baudrate /= self->uart.Instance->BRR; // check we could set the baudrate within 5% uint32_t baudrate_diff; if (actual_baudrate > init->BaudRate) { baudrate_diff = actual_baudrate - init->BaudRate; } else { baudrate_diff = init->BaudRate - actual_baudrate; } init->BaudRate = actual_baudrate; // remember actual baudrate for printing if (20 * baudrate_diff > init->BaudRate) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "set baudrate %d is not within 5%% of desired value", actual_baudrate)); } return mp_const_none; } /// \classmethod \constructor(bus, ...) /// /// Construct a UART object on the given bus. `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'. /// With no additional parameters, the UART object is created but not /// initialised (it has the settings from the last initialisation of /// the bus, if any). If extra arguments are given, the bus is initialised. /// See `init` for parameters of initialisation. /// /// The physical pins of the UART busses are: /// /// - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)` /// - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)` /// - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)` /// - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)` /// - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)` STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // work out port int uart_id = 0; if (MP_OBJ_IS_STR(args[0])) { const char *port = mp_obj_str_get_str(args[0]); if (0) { #ifdef MICROPY_HW_UART1_NAME } else if (strcmp(port, MICROPY_HW_UART1_NAME) == 0) { uart_id = PYB_UART_1; #endif #ifdef MICROPY_HW_UART2_NAME } else if (strcmp(port, MICROPY_HW_UART2_NAME) == 0) { uart_id = PYB_UART_2; #endif #ifdef MICROPY_HW_UART3_NAME } else if (strcmp(port, MICROPY_HW_UART3_NAME) == 0) { uart_id = PYB_UART_3; #endif #ifdef MICROPY_HW_UART4_NAME } else if (strcmp(port, MICROPY_HW_UART4_NAME) == 0) { uart_id = PYB_UART_4; #endif #ifdef MICROPY_HW_UART5_NAME } else if (strcmp(port, MICROPY_HW_UART5_NAME) == 0) { uart_id = PYB_UART_5; #endif #ifdef MICROPY_HW_UART6_NAME } else if (strcmp(port, MICROPY_HW_UART6_NAME) == 0) { uart_id = PYB_UART_6; #endif } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) doesn't exist", port)); } } else { uart_id = mp_obj_get_int(args[0]); if (!uart_exists(uart_id)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", uart_id)); } } pyb_uart_obj_t *self; if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) { // create new UART object self = m_new0(pyb_uart_obj_t, 1); self->base.type = &pyb_uart_type; self->uart_id = uart_id; MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self; } else { // reference existing UART object self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1]; } if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args); } return self; } STATIC mp_obj_t pyb_uart_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init); /// \method deinit() /// Turn off the UART bus. STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; self->is_enabled = false; UART_HandleTypeDef *uart = &self->uart; HAL_UART_DeInit(uart); if (uart->Instance == USART1) { HAL_NVIC_DisableIRQ(USART1_IRQn); __USART1_FORCE_RESET(); __USART1_RELEASE_RESET(); __USART1_CLK_DISABLE(); } else if (uart->Instance == USART2) { HAL_NVIC_DisableIRQ(USART2_IRQn); __USART2_FORCE_RESET(); __USART2_RELEASE_RESET(); __USART2_CLK_DISABLE(); #if defined(USART3) } else if (uart->Instance == USART3) { HAL_NVIC_DisableIRQ(USART3_IRQn); __USART3_FORCE_RESET(); __USART3_RELEASE_RESET(); __USART3_CLK_DISABLE(); #endif #if defined(UART4) } else if (uart->Instance == UART4) { HAL_NVIC_DisableIRQ(UART4_IRQn); __UART4_FORCE_RESET(); __UART4_RELEASE_RESET(); __UART4_CLK_DISABLE(); #endif #if defined(UART5) } else if (uart->Instance == UART5) { HAL_NVIC_DisableIRQ(UART5_IRQn); __UART5_FORCE_RESET(); __UART5_RELEASE_RESET(); __UART5_CLK_DISABLE(); #endif #if defined(UART6) } else if (uart->Instance == USART6) { HAL_NVIC_DisableIRQ(USART6_IRQn); __USART6_FORCE_RESET(); __USART6_RELEASE_RESET(); __USART6_CLK_DISABLE(); #endif #if defined(UART7) } else if (uart->Instance == UART7) { HAL_NVIC_DisableIRQ(UART7_IRQn); __UART7_FORCE_RESET(); __UART7_RELEASE_RESET(); __UART7_CLK_DISABLE(); #endif #if defined(UART8) } else if (uart->Instance == UART8) { HAL_NVIC_DisableIRQ(UART8_IRQn); __UART8_FORCE_RESET(); __UART8_RELEASE_RESET(); __UART8_CLK_DISABLE(); #endif } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit); /// \method any() /// Return `True` if any characters waiting, else `False`. STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; return MP_OBJ_NEW_SMALL_INT(uart_rx_any(self)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any); /// \method writechar(char) /// Write a single character on the bus. `char` is an integer to write. /// Return value: `None`. STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) { pyb_uart_obj_t *self = self_in; // get the character to write (might be 9 bits) uint16_t data = mp_obj_get_int(char_in); // write the character int errcode; if (uart_tx_wait(self, self->timeout)) { uart_tx_data(self, &data, 1, &errcode); } else { errcode = MP_ETIMEDOUT; } if (errcode != 0) { mp_raise_OSError(errcode); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar); /// \method readchar() /// Receive a single character on the bus. /// Return value: The character read, as an integer. Returns -1 on timeout. STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; if (uart_rx_wait(self, self->timeout)) { return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self)); } else { // return -1 on timeout return MP_OBJ_NEW_SMALL_INT(-1); } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar); // uart.sendbreak() STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) { pyb_uart_obj_t *self = self_in; #if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4) self->uart.Instance->RQR = USART_RQR_SBKRQ; // write-only register #else self->uart.Instance->CR1 |= USART_CR1_SBK; #endif return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak); STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_uart_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_uart_any_obj) }, /// \method read([nbytes]) { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, /// \method readline() { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)}, /// \method readinto(buf[, nbytes]) { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, /// \method write(buf) { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&pyb_uart_writechar_obj) }, { MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&pyb_uart_readchar_obj) }, { MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&pyb_uart_sendbreak_obj) }, // class constants { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) }, { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table); STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = self_in; byte *buf = buf_in; // check that size is a multiple of character width if (size & self->char_width) { *errcode = MP_EIO; return MP_STREAM_ERROR; } // convert byte size to char size size >>= self->char_width; // make sure we want at least 1 char if (size == 0) { return 0; } // wait for first char to become available if (!uart_rx_wait(self, self->timeout)) { // return EAGAIN error to indicate non-blocking (then read() method returns None) *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } // read the data byte *orig_buf = buf; for (;;) { int data = uart_rx_char(self); if (self->char_width == CHAR_WIDTH_9BIT) { *(uint16_t*)buf = data; buf += 2; } else { *buf++ = data; } if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) { // return number of bytes read return buf - orig_buf; } } } STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = self_in; const byte *buf = buf_in; // check that size is a multiple of character width if (size & self->char_width) { *errcode = MP_EIO; return MP_STREAM_ERROR; } // wait to be able to write the first character. EAGAIN causes write to return None if (!uart_tx_wait(self, self->timeout)) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } // write the data size_t num_tx = uart_tx_data(self, buf, size >> self->char_width, errcode); if (*errcode == 0 || *errcode == MP_ETIMEDOUT) { // return number of bytes written, even if there was a timeout return num_tx << self->char_width; } else { return MP_STREAM_ERROR; } } STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) { pyb_uart_obj_t *self = self_in; mp_uint_t ret; if (request == MP_STREAM_POLL) { mp_uint_t flags = arg; ret = 0; if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self)) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) { ret |= MP_STREAM_POLL_WR; } } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } STATIC const mp_stream_p_t uart_stream_p = { .read = pyb_uart_read, .write = pyb_uart_write, .ioctl = pyb_uart_ioctl, .is_text = false, }; const mp_obj_type_t pyb_uart_type = { { &mp_type_type }, .name = MP_QSTR_UART, .print = pyb_uart_print, .make_new = pyb_uart_make_new, .getiter = mp_identity_getiter, .iternext = mp_stream_unbuffered_iter, .protocol = &uart_stream_p, .locals_dict = (mp_obj_dict_t*)&pyb_uart_locals_dict, };