/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "stm32f4xx_hal.h" #include "py/mpstate.h" #include "py/nlr.h" #include "py/obj.h" #include "py/gc.h" #include "gccollect.h" #include "irq.h" #include "systick.h" #include "pyexec.h" #include "led.h" #include "pin.h" #include "timer.h" #include "extint.h" #include "usrsw.h" #include "rng.h" #include "rtc.h" #include "i2c.h" #include "spi.h" #include "uart.h" #include "can.h" #include "adc.h" #include "storage.h" #include "sdcard.h" #include "accel.h" #include "servo.h" #include "dac.h" #include "lcd.h" #include "usb.h" #include "pybstdio.h" #include "ff.h" #include "diskio.h" #include "fsusermount.h" #include "portmodules.h" /// \module pyb - functions related to the pyboard /// /// The `pyb` module contains specific functions related to the pyboard. /// \function bootloader() /// Activate the bootloader without BOOT* pins. STATIC NORETURN mp_obj_t pyb_bootloader(void) { pyb_usb_dev_stop(); storage_flush(); HAL_RCC_DeInit(); HAL_DeInit(); __HAL_REMAPMEMORY_SYSTEMFLASH(); // arm-none-eabi-gcc 4.9.0 does not correctly inline this // MSP function, so we write it out explicitly here. //__set_MSP(*((uint32_t*) 0x00000000)); __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp"); ((void (*)(void)) *((uint32_t*) 0x00000004))(); while (1); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader); /// \function hard_reset() /// Resets the pyboard in a manner similar to pushing the external RESET /// button. STATIC mp_obj_t pyb_hard_reset(void) { NVIC_SystemReset(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset); /// \function info([dump_alloc_table]) /// Print out lots of information about the board. STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) { // get and print unique id; 96 bits { byte *id = (byte*)0x1fff7a10; printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]); } // get and print clock speeds // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz { printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", HAL_RCC_GetSysClockFreq(), HAL_RCC_GetHCLKFreq(), HAL_RCC_GetPCLK1Freq(), HAL_RCC_GetPCLK2Freq()); } // to print info about memory { printf("_etext=%p\n", &_etext); printf("_sidata=%p\n", &_sidata); printf("_sdata=%p\n", &_sdata); printf("_edata=%p\n", &_edata); printf("_sbss=%p\n", &_sbss); printf("_ebss=%p\n", &_ebss); printf("_estack=%p\n", &_estack); printf("_ram_start=%p\n", &_ram_start); printf("_heap_start=%p\n", &_heap_start); printf("_heap_end=%p\n", &_heap_end); printf("_ram_end=%p\n", &_ram_end); } // qstr info { mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes; qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes); printf("qstr:\n n_pool=" UINT_FMT "\n n_qstr=" UINT_FMT "\n n_str_data_bytes=" UINT_FMT "\n n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes); } // GC info { gc_info_t info; gc_info(&info); printf("GC:\n"); printf(" " UINT_FMT " total\n", info.total); printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free); printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block); } // free space on flash { DWORD nclst; FATFS *fatfs; f_getfree("/flash", &nclst, &fatfs); printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512)); } if (n_args == 1) { // arg given means dump gc allocation table gc_dump_alloc_table(); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info); /// \function unique_id() /// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU. STATIC mp_obj_t pyb_unique_id(void) { byte *id = (byte*)0x1fff7a10; return mp_obj_new_bytes(id, 12); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id); // get or set the MCU frequencies STATIC mp_uint_t pyb_freq_calc_ahb_div(mp_uint_t wanted_div) { if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; } else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; } else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; } else if (wanted_div <= 8) { return RCC_SYSCLK_DIV8; } else if (wanted_div <= 16) { return RCC_SYSCLK_DIV16; } else if (wanted_div <= 64) { return RCC_SYSCLK_DIV64; } else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; } else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; } else { return RCC_SYSCLK_DIV512; } } STATIC mp_uint_t pyb_freq_calc_apb_div(mp_uint_t wanted_div) { if (wanted_div <= 1) { return RCC_HCLK_DIV1; } else if (wanted_div <= 2) { return RCC_HCLK_DIV2; } else if (wanted_div <= 4) { return RCC_HCLK_DIV4; } else if (wanted_div <= 8) { return RCC_HCLK_DIV8; } else { return RCC_SYSCLK_DIV16; } } STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) { if (n_args == 0) { // get mp_obj_t tuple[4] = { mp_obj_new_int(HAL_RCC_GetSysClockFreq()), mp_obj_new_int(HAL_RCC_GetHCLKFreq()), mp_obj_new_int(HAL_RCC_GetPCLK1Freq()), mp_obj_new_int(HAL_RCC_GetPCLK2Freq()), }; return mp_obj_new_tuple(4, tuple); } else { // set mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000; // default PLL parameters that give 48MHz on PLL48CK uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7; uint32_t sysclk_source; // the following logic assumes HSE < HSI if (HSE_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < HSI_VALUE / 1000000) { // use HSE as SYSCLK sysclk_source = RCC_SYSCLKSOURCE_HSE; } else if (HSI_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < 24) { // use HSI as SYSCLK sysclk_source = RCC_SYSCLKSOURCE_HSI; } else { // search for a valid PLL configuration that keeps USB at 48MHz for (; wanted_sysclk > 0; wanted_sysclk--) { for (p = 2; p <= 8; p += 2) { // compute VCO_OUT mp_uint_t vco_out = wanted_sysclk * p; // make sure VCO_OUT is between 192MHz and 432MHz if (vco_out < 192 || vco_out > 432) { continue; } // make sure Q is an integer if (vco_out % 48 != 0) { continue; } // solve for Q to get PLL48CK at 48MHz q = vco_out / 48; // make sure Q is in range if (q < 2 || q > 15) { continue; } // make sure N/M is an integer if (vco_out % (HSE_VALUE / 1000000) != 0) { continue; } // solve for N/M mp_uint_t n_by_m = vco_out / (HSE_VALUE / 1000000); // solve for M, making sure VCO_IN (=HSE/M) is between 1MHz and 2MHz m = 192 / n_by_m; while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) { m += 1; } if (m > (HSE_VALUE / 1000000)) { continue; } // solve for N n = n_by_m * m; // make sure N is in range if (n < 192 || n > 432) { continue; } // found values! sysclk_source = RCC_SYSCLKSOURCE_PLLCLK; goto set_clk; } } nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq")); } set_clk: //printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q); // let the USB CDC have a chance to process before we change the clock HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2); // desired system clock source is in sysclk_source RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) { // set HSE as system clock source to allow modification of the PLL configuration // we then change to PLL after re-configuring PLL RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE; } else { // directly set the system clock source as desired RCC_ClkInitStruct.SYSCLKSource = sysclk_source; } wanted_sysclk *= 1000000; if (n_args >= 2) { // note: AHB freq required to be >= 14.2MHz for USB operation RCC_ClkInitStruct.AHBCLKDivider = pyb_freq_calc_ahb_div(wanted_sysclk / mp_obj_get_int(args[1])); } else { RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; } if (n_args >= 3) { RCC_ClkInitStruct.APB1CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[2])); } else { RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; } if (n_args >= 4) { RCC_ClkInitStruct.APB2CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[3])); } else { RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; } if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { goto fail; } // re-configure PLL // even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO RCC_OscInitTypeDef RCC_OscInitStruct; RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = m; RCC_OscInitStruct.PLL.PLLN = n; RCC_OscInitStruct.PLL.PLLP = p; RCC_OscInitStruct.PLL.PLLQ = q; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { goto fail; } // set PLL as system clock source if wanted if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) { RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { goto fail; } } // re-init TIM3 for USB CDC rate timer_tim3_init(); return mp_const_none; fail:; void NORETURN __fatal_error(const char *msg); __fatal_error("can't change freq"); } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 4, pyb_freq); /// \function sync() /// Sync all file systems. STATIC mp_obj_t pyb_sync(void) { storage_flush(); disk_ioctl(2, CTRL_SYNC, NULL); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync); /// \function millis() /// Returns the number of milliseconds since the board was last reset. /// /// The result is always a micropython smallint (31-bit signed number), so /// after 2^30 milliseconds (about 12.4 days) this will start to return /// negative numbers. STATIC mp_obj_t pyb_millis(void) { // We want to "cast" the 32 bit unsigned into a small-int. This means // copying the MSB down 1 bit (extending the sign down), which is // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro. return MP_OBJ_NEW_SMALL_INT(HAL_GetTick()); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis); /// \function elapsed_millis(start) /// Returns the number of milliseconds which have elapsed since `start`. /// /// This function takes care of counter wrap, and always returns a positive /// number. This means it can be used to measure periods upto about 12.4 days. /// /// Example: /// start = pyb.millis() /// while pyb.elapsed_millis(start) < 1000: /// # Perform some operation STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) { uint32_t startMillis = mp_obj_get_int(start); uint32_t currMillis = HAL_GetTick(); return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis); /// \function micros() /// Returns the number of microseconds since the board was last reset. /// /// The result is always a micropython smallint (31-bit signed number), so /// after 2^30 microseconds (about 17.8 minutes) this will start to return /// negative numbers. STATIC mp_obj_t pyb_micros(void) { // We want to "cast" the 32 bit unsigned into a small-int. This means // copying the MSB down 1 bit (extending the sign down), which is // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro. return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds()); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros); /// \function elapsed_micros(start) /// Returns the number of microseconds which have elapsed since `start`. /// /// This function takes care of counter wrap, and always returns a positive /// number. This means it can be used to measure periods upto about 17.8 minutes. /// /// Example: /// start = pyb.micros() /// while pyb.elapsed_micros(start) < 1000: /// # Perform some operation STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) { uint32_t startMicros = mp_obj_get_int(start); uint32_t currMicros = sys_tick_get_microseconds(); return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros); /// \function delay(ms) /// Delay for the given number of milliseconds. STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) { mp_int_t ms = mp_obj_get_int(ms_in); if (ms >= 0) { HAL_Delay(ms); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay); /// \function udelay(us) /// Delay for the given number of microseconds. STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) { mp_int_t usec = mp_obj_get_int(usec_in); if (usec > 0) { sys_tick_udelay(usec); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay); /// \function stop() STATIC mp_obj_t pyb_stop(void) { HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI); // reconfigure the system clock after waking up // enable HSE __HAL_RCC_HSE_CONFIG(RCC_HSE_ON); while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) { } // enable PLL __HAL_RCC_PLL_ENABLE(); while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) { } // select PLL as system clock source MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK); while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) { } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop); /// \function standby() STATIC mp_obj_t pyb_standby(void) { HAL_PWR_EnterSTANDBYMode(); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby); /// \function have_cdc() /// Return True if USB is connected as a serial device, False otherwise. STATIC mp_obj_t pyb_have_cdc(void ) { return MP_BOOL(usb_vcp_is_connected()); } STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc); /// \function repl_uart(uart) /// Get or set the UART object that the REPL is repeated on. STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) { if (n_args == 0) { if (MP_STATE_PORT(pyb_stdio_uart) == NULL) { return mp_const_none; } else { return MP_STATE_PORT(pyb_stdio_uart); } } else { if (args[0] == mp_const_none) { MP_STATE_PORT(pyb_stdio_uart) = NULL; } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) { MP_STATE_PORT(pyb_stdio_uart) = args[0]; } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object")); } return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart); /// \function hid((buttons, x, y, z)) /// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to /// signal a HID mouse-motion event. STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) { mp_obj_t *items; mp_obj_get_array_fixed_n(arg, 4, &items); uint8_t data[4]; data[0] = mp_obj_get_int(items[0]); data[1] = mp_obj_get_int(items[1]); data[2] = mp_obj_get_int(items[2]); data[3] = mp_obj_get_int(items[3]); usb_hid_send_report(data); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report); MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c STATIC const mp_map_elem_t pyb_module_globals_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) }, { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_mount), (mp_obj_t)&pyb_mount_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type }, #if MICROPY_HW_ENABLE_RNG { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj }, #endif #if MICROPY_HW_ENABLE_RTC { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type }, #endif { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type }, #if MICROPY_HW_ENABLE_SERVO { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type }, #endif #if MICROPY_HW_HAS_SWITCH { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type }, #endif #if MICROPY_HW_HAS_SDCARD { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj }, #endif #if defined(MICROPY_HW_LED1) { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type }, #endif { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type }, #if MICROPY_HW_ENABLE_CAN { MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type }, #endif { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type }, #if MICROPY_HW_ENABLE_DAC { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type }, #endif #if MICROPY_HW_HAS_MMA7660 { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type }, #endif #if MICROPY_HW_HAS_LCD { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type }, #endif }; STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table); const mp_obj_module_t pyb_module = { .base = { &mp_type_module }, .name = MP_QSTR_pyb, .globals = (mp_obj_dict_t*)&pyb_module_globals, };