/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Dan Halbert for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* * Includes code from ASF sample code adc_temp.h and adc_temp.c, * and so includes this license: * * Copyright (C) 2015 Atmel Corporation. All rights reserved. * * License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include "py/mphal.h" #include "common-hal/microcontroller/Processor.h" #include "shared-bindings/microcontroller/ResetReason.h" #include "samd/adc.h" #include "peripheral_clk_config.h" #define ADC_TEMP_SAMPLE_LENGTH 4 #define INT1V_VALUE_FLOAT 1.0 #define INT1V_DIVIDER_1000 1000.0 #define ADC_12BIT_FULL_SCALE_VALUE_FLOAT 4095.0 // channel argument (ignored in calls below) #define IGNORED_CHANNEL 0 // Decimal to fraction conversion. (adapted from ASF sample). STATIC float convert_dec_to_frac(uint8_t val) { float float_val = (float)val; if (val < 10) { return float_val / 10.0; } else if (val < 100) { return float_val / 100.0; } else { return float_val / 1000.0; } } // Extract the production calibration data information from NVM (adapted from ASF sample), // then calculate the temperature #ifdef SAMD21 STATIC float calculate_temperature(uint16_t raw_value) { volatile uint32_t val1; /* Temperature Log Row Content first 32 bits */ volatile uint32_t val2; /* Temperature Log Row Content another 32 bits */ uint8_t room_temp_val_int; /* Integer part of room temperature in °C */ uint8_t room_temp_val_dec; /* Decimal part of room temperature in °C */ uint8_t hot_temp_val_int; /* Integer part of hot temperature in °C */ uint8_t hot_temp_val_dec; /* Decimal part of hot temperature in °C */ int8_t room_int1v_val; /* internal 1V reference drift at room temperature */ int8_t hot_int1v_val; /* internal 1V reference drift at hot temperature*/ float tempR; // Production Room temperature float tempH; // Production Hot temperature float INT1VR; // Room temp 2's complement of the internal 1V reference value float INT1VH; // Hot temp 2's complement of the internal 1V reference value uint16_t ADCR; // Production Room temperature ADC value uint16_t ADCH; // Production Hot temperature ADC value float VADCR; // Room temperature ADC voltage float VADCH; // Hot temperature ADC voltage uint32_t *temp_log_row_ptr = (uint32_t *)NVMCTRL_TEMP_LOG; val1 = *temp_log_row_ptr; temp_log_row_ptr++; val2 = *temp_log_row_ptr; room_temp_val_int = (uint8_t)((val1 & FUSES_ROOM_TEMP_VAL_INT_Msk) >> FUSES_ROOM_TEMP_VAL_INT_Pos); room_temp_val_dec = (uint8_t)((val1 & FUSES_ROOM_TEMP_VAL_DEC_Msk) >> FUSES_ROOM_TEMP_VAL_DEC_Pos); hot_temp_val_int = (uint8_t)((val1 & FUSES_HOT_TEMP_VAL_INT_Msk) >> FUSES_HOT_TEMP_VAL_INT_Pos); hot_temp_val_dec = (uint8_t)((val1 & FUSES_HOT_TEMP_VAL_DEC_Msk) >> FUSES_HOT_TEMP_VAL_DEC_Pos); room_int1v_val = (int8_t)((val1 & FUSES_ROOM_INT1V_VAL_Msk) >> FUSES_ROOM_INT1V_VAL_Pos); hot_int1v_val = (int8_t)((val2 & FUSES_HOT_INT1V_VAL_Msk) >> FUSES_HOT_INT1V_VAL_Pos); ADCR = (uint16_t)((val2 & FUSES_ROOM_ADC_VAL_Msk) >> FUSES_ROOM_ADC_VAL_Pos); ADCH = (uint16_t)((val2 & FUSES_HOT_ADC_VAL_Msk) >> FUSES_HOT_ADC_VAL_Pos); tempR = room_temp_val_int + convert_dec_to_frac(room_temp_val_dec); tempH = hot_temp_val_int + convert_dec_to_frac(hot_temp_val_dec); INT1VR = 1 - ((float)room_int1v_val / INT1V_DIVIDER_1000); INT1VH = 1 - ((float)hot_int1v_val / INT1V_DIVIDER_1000); VADCR = ((float)ADCR * INT1VR) / ADC_12BIT_FULL_SCALE_VALUE_FLOAT; VADCH = ((float)ADCH * INT1VH) / ADC_12BIT_FULL_SCALE_VALUE_FLOAT; float VADC; /* Voltage calculation using ADC result for Coarse Temp calculation */ float VADCM; /* Voltage calculation using ADC result for Fine Temp calculation. */ float INT1VM; /* Voltage calculation for reality INT1V value during the ADC conversion */ VADC = ((float)raw_value * INT1V_VALUE_FLOAT) / ADC_12BIT_FULL_SCALE_VALUE_FLOAT; // Hopefully compiler will remove common subepxressions here. // calculate fine temperature using Equation1 and Equation // 1b as mentioned in data sheet section "Temperature Sensor Characteristics" // of Electrical Characteristics. (adapted from ASF sample code). // Coarse Temp Calculation by assume INT1V=1V for this ADC conversion float coarse_temp = tempR + (((tempH - tempR) / (VADCH - VADCR)) * (VADC - VADCR)); // Calculation to find the real INT1V value during the ADC conversion INT1VM = INT1VR + (((INT1VH - INT1VR) * (coarse_temp - tempR)) / (tempH - tempR)); VADCM = ((float)raw_value * INT1VM) / ADC_12BIT_FULL_SCALE_VALUE_FLOAT; // Fine Temp Calculation by replace INT1V=1V by INT1V = INT1Vm for ADC conversion float fine_temp = tempR + (((tempH - tempR) / (VADCH - VADCR)) * (VADCM - VADCR)); return fine_temp; } #endif // SAMD21 #ifdef SAM_D5X_E5X STATIC float calculate_temperature(uint16_t TP, uint16_t TC) { uint32_t TLI = (*(uint32_t *)FUSES_ROOM_TEMP_VAL_INT_ADDR & FUSES_ROOM_TEMP_VAL_INT_Msk) >> FUSES_ROOM_TEMP_VAL_INT_Pos; uint32_t TLD = (*(uint32_t *)FUSES_ROOM_TEMP_VAL_DEC_ADDR & FUSES_ROOM_TEMP_VAL_DEC_Msk) >> FUSES_ROOM_TEMP_VAL_DEC_Pos; float TL = TLI + convert_dec_to_frac(TLD); uint32_t THI = (*(uint32_t *)FUSES_HOT_TEMP_VAL_INT_ADDR & FUSES_HOT_TEMP_VAL_INT_Msk) >> FUSES_HOT_TEMP_VAL_INT_Pos; uint32_t THD = (*(uint32_t *)FUSES_HOT_TEMP_VAL_DEC_ADDR & FUSES_HOT_TEMP_VAL_DEC_Msk) >> FUSES_HOT_TEMP_VAL_DEC_Pos; float TH = THI + convert_dec_to_frac(THD); uint16_t VPL = (*(uint32_t *)FUSES_ROOM_ADC_VAL_PTAT_ADDR & FUSES_ROOM_ADC_VAL_PTAT_Msk) >> FUSES_ROOM_ADC_VAL_PTAT_Pos; uint16_t VPH = (*(uint32_t *)FUSES_HOT_ADC_VAL_PTAT_ADDR & FUSES_HOT_ADC_VAL_PTAT_Msk) >> FUSES_HOT_ADC_VAL_PTAT_Pos; uint16_t VCL = (*(uint32_t *)FUSES_ROOM_ADC_VAL_CTAT_ADDR & FUSES_ROOM_ADC_VAL_CTAT_Msk) >> FUSES_ROOM_ADC_VAL_CTAT_Pos; uint16_t VCH = (*(uint32_t *)FUSES_HOT_ADC_VAL_CTAT_ADDR & FUSES_HOT_ADC_VAL_CTAT_Msk) >> FUSES_HOT_ADC_VAL_CTAT_Pos; // From SAMD51 datasheet: section 45.6.3.1 (page 1327). return (TL * VPH * TC - VPL * TH * TC - TL * VCH * TP + TH * VCL * TP) / (VCL * TP - VCH * TP - VPL * TC + VPH * TC); } #endif // SAMD51 float common_hal_mcu_processor_get_temperature(void) { struct adc_sync_descriptor adc; static Adc *adc_insts[] = ADC_INSTS; samd_peripherals_adc_setup(&adc, adc_insts[0]); #ifdef SAMD21 // The parameters chosen here are from the temperature example in: // http://www.atmel.com/images/Atmel-42645-ADC-Configurations-with-Examples_ApplicationNote_AT11481.pdf // That note also recommends in general: // "Discard the first conversion result whenever there is a change // in ADC configuration like voltage reference / ADC channel change." adc_sync_set_resolution(&adc, ADC_CTRLB_RESSEL_12BIT_Val); adc_sync_set_reference(&adc, ADC_REFCTRL_REFSEL_INT1V_Val); // Channel arg is ignored. adc_sync_enable_channel(&adc, IGNORED_CHANNEL); adc_sync_set_inputs(&adc, ADC_INPUTCTRL_MUXPOS_TEMP_Val, // pos_input ADC_INPUTCTRL_MUXNEG_GND_Val, // neg_input IGNORED_CHANNEL); // channel (ignored) hri_adc_write_CTRLB_PRESCALER_bf(adc.device.hw, ADC_CTRLB_PRESCALER_DIV32_Val); hri_adc_write_SAMPCTRL_SAMPLEN_bf(adc.device.hw, ADC_TEMP_SAMPLE_LENGTH); hri_sysctrl_set_VREF_TSEN_bit(SYSCTRL); // Oversample and decimate. A higher samplenum produces a more stable result. hri_adc_write_AVGCTRL_SAMPLENUM_bf(adc.device.hw, ADC_AVGCTRL_SAMPLENUM_4_Val); hri_adc_write_AVGCTRL_ADJRES_bf(adc.device.hw, 2); volatile uint16_t value; // Read twice and discard first result, as recommended in section 14 of // http://www.atmel.com/images/Atmel-42645-ADC-Configurations-with-Examples_ApplicationNote_AT11481.pdf // "Discard the first conversion result whenever there is a change in ADC configuration // like voltage reference / ADC channel change" // Empirical observation shows the first reading is quite different than subsequent ones. // Channel arg is ignored. adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t *)&value), 2); adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t *)&value), 2); adc_sync_deinit(&adc); return calculate_temperature(value); #endif // SAMD21 #ifdef SAM_D5X_E5X adc_sync_set_resolution(&adc, ADC_CTRLB_RESSEL_12BIT_Val); // Using INTVCC0 as the reference voltage. // INTVCC1 seems to read a little high. // INTREF doesn't work: ADC hangs BUSY. It's supposed to work, but does not. // The SAME54 example from Atmel START implicitly uses INTREF. adc_sync_set_reference(&adc, ADC_REFCTRL_REFSEL_INTVCC0_Val); hri_supc_set_VREF_ONDEMAND_bit(SUPC); // Enable temperature sensor. hri_supc_set_VREF_TSEN_bit(SUPC); hri_supc_set_VREF_VREFOE_bit(SUPC); // Channel arg is ignored. adc_sync_enable_channel(&adc, IGNORED_CHANNEL); adc_sync_set_inputs(&adc, ADC_INPUTCTRL_MUXPOS_PTAT_Val, // pos_input ADC_INPUTCTRL_MUXNEG_GND_Val, // neg_input IGNORED_CHANNEL); // channel (ignored) // Read both temperature sensors. volatile uint16_t ptat; volatile uint16_t ctat; // Read twice for stability (necessary?). adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t *)&ptat), 2); adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t *)&ptat), 2); adc_sync_set_inputs(&adc, ADC_INPUTCTRL_MUXPOS_CTAT_Val, // pos_input ADC_INPUTCTRL_MUXNEG_GND_Val, // neg_input IGNORED_CHANNEL); // channel (ignored) adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t *)&ctat), 2); adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t *)&ctat), 2); // Turn off temp sensor. hri_supc_clear_VREF_TSEN_bit(SUPC); adc_sync_deinit(&adc); return calculate_temperature(ptat, ctat); #endif // SAMD51 } float common_hal_mcu_processor_get_voltage(void) { #if MICROCONTROLLER_VOLTAGE_DISABLE return NAN; #else struct adc_sync_descriptor adc; static Adc *adc_insts[] = ADC_INSTS; samd_peripherals_adc_setup(&adc, adc_insts[0]); #ifdef SAMD21 adc_sync_set_reference(&adc, ADC_REFCTRL_REFSEL_INT1V_Val); #endif #ifdef SAM_D5X_E5X hri_supc_clear_VREF_ONDEMAND_bit(SUPC); hri_supc_set_VREF_SEL_bf(SUPC, SUPC_VREF_SEL_1V0_Val); hri_supc_set_VREF_VREFOE_bit(SUPC); adc_sync_set_reference(&adc, ADC_REFCTRL_REFSEL_INTREF_Val); // On some processor samples, the ADC will hang trying to read the voltage. A simple // delay after setting the SUPC bits seems to fix things. This appears to be due to VREFOE // startup time. There is no synchronization bit to check. // See https://community.atmel.com/forum/samd51-using-intref-adc-voltage-reference mp_hal_delay_ms(1); #endif adc_sync_set_resolution(&adc, ADC_CTRLB_RESSEL_12BIT_Val); // Channel arg is ignored. adc_sync_set_inputs(&adc, ADC_INPUTCTRL_MUXPOS_SCALEDIOVCC_Val, // IOVCC/4 (nominal 3.3V/4) ADC_INPUTCTRL_MUXNEG_GND_Val, // neg_input IGNORED_CHANNEL); // channel (ignored). adc_sync_enable_channel(&adc, IGNORED_CHANNEL); volatile uint16_t reading; // Channel arg is ignored. // Read twice and discard first result, as recommended in section 14 of // http://www.atmel.com/images/Atmel-42645-ADC-Configurations-with-Examples_ApplicationNote_AT11481.pdf // "Discard the first conversion result whenever there is a change in ADC configuration // like voltage reference / ADC channel change" // Empirical observation shows the first reading is quite different than subsequent ones. adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t *)&reading), 2); adc_sync_read_channel(&adc, IGNORED_CHANNEL, ((uint8_t *)&reading), 2); adc_sync_deinit(&adc); // Multiply by 4 to compensate for SCALEDIOVCC division by 4. return (reading / 4095.0f) * 4.0f; #endif } uint32_t common_hal_mcu_processor_get_frequency(void) { // TODO(tannewt): Determine this dynamically. return CONF_CPU_FREQUENCY; } void common_hal_mcu_processor_get_uid(uint8_t raw_id[]) { #ifdef SAMD21 uint32_t *id_addresses[4] = {(uint32_t *)0x0080A00C, (uint32_t *)0x0080A040, (uint32_t *)0x0080A044, (uint32_t *)0x0080A048}; #endif #ifdef SAM_D5X_E5X uint32_t *id_addresses[4] = {(uint32_t *)0x008061FC, (uint32_t *)0x00806010, (uint32_t *)0x00806014, (uint32_t *)0x00806018}; #endif for (int i = 0; i < 4; i++) { for (int k = 0; k < 4; k++) { raw_id[4 * i + k] = (*(id_addresses[i]) >> k * 8) & 0xff; } } } mcu_reset_reason_t common_hal_mcu_processor_get_reset_reason(void) { return RESET_REASON_UNKNOWN; }