/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017-2020 Nick Moore * Copyright (c) 2018 shawwwn * Copyright (c) 2020-2021 Glenn Moloney @glenn20 * Copyright (c) 2023 MicroDev * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mperrno.h" #include "py/runtime.h" #include "bindings/espnow/ESPNowPacket.h" #include "shared-bindings/wifi/__init__.h" #include "common-hal/espnow/ESPNow.h" #include "mphalport.h" #include "esp_now.h" #define ESPNOW_MAGIC 0x99 // The maximum length of an espnow packet (bytes) #define MAX_PACKET_LEN (sizeof(espnow_packet_t) + ESP_NOW_MAX_DATA_LEN) // Enough for 2 full-size packets: 2 * (6 + 7 + 250) = 526 bytes // Will allocate an additional 7 bytes for buffer overhead #define DEFAULT_RECV_BUFFER_SIZE (2 * MAX_PACKET_LEN) // Time to wait (millisec) for responses from sent packets: (2 seconds). #define DEFAULT_SEND_TIMEOUT_MS (2 * 1000) // Number of milliseconds to wait for pending responses to sent packets. // This is a fallback which should never be reached. #define PENDING_RESPONSES_TIMEOUT_MS 100 #define PENDING_RESPONSES_BUSY_POLL_MS 10 // ESPNow packet format for the receive buffer. // Use this for peeking at the header of the next packet in the buffer. typedef struct { uint8_t magic; // = ESPNOW_MAGIC uint8_t msg_len; // Length of the message uint32_t time_ms; // Timestamp (ms) when packet is received int8_t rssi; // RSSI value (dBm) (-127 to 0) } __attribute__((packed)) espnow_header_t; typedef struct { espnow_header_t header; // The header uint8_t peer[6]; // Peer address uint8_t msg[0]; // Message is up to 250 bytes } __attribute__((packed)) espnow_packet_t; static void check_esp_err(esp_err_t status) { if (status != ESP_OK) { mp_raise_RuntimeError(translate("an error occured")); } } // Return a pointer to the ESPNow module singleton static espnow_obj_t *_get_singleton(void) { return MP_STATE_PORT(espnow_singleton); } // --- The ESP-NOW send and recv callback routines --- // Callback triggered when a sent packet is acknowledged by the peer (or not). // Just count the number of responses and number of failures. // These are used in the send() logic. static void send_cb(const uint8_t *mac, esp_now_send_status_t status) { espnow_obj_t *self = _get_singleton(); self->tx_responses++; if (status != ESP_NOW_SEND_SUCCESS) { self->tx_failures++; } } static inline int8_t _get_rssi_from_wifi_packet(const uint8_t *msg); // Callback triggered when an ESP-NOW packet is received. // Write the peer MAC address and the message into the recv_buffer as an ESPNow packet. // If the buffer is full, drop the message and increment the dropped count. static void recv_cb(const uint8_t *mac, const uint8_t *msg, int msg_len) { espnow_obj_t *self = _get_singleton(); ringbuf_t *buf = self->recv_buffer; if (sizeof(espnow_packet_t) + msg_len > ringbuf_num_empty(buf)) { self->rx_failures++; return; } espnow_header_t header; header.magic = ESPNOW_MAGIC; header.msg_len = msg_len; header.rssi = _get_rssi_from_wifi_packet(msg); header.time_ms = mp_hal_ticks_ms(); ringbuf_put_n(buf, (uint8_t *)&header, sizeof(header)); ringbuf_put_n(buf, mac, ESP_NOW_ETH_ALEN); ringbuf_put_n(buf, msg, msg_len); self->rx_packets++; } bool common_hal_espnow_deinited(espnow_obj_t *self) { return self->recv_buffer == NULL; } // Initialize the ESP-NOW software stack, // register callbacks and allocate the recv data buffers. void common_hal_espnow_init(espnow_obj_t *self) { if (!common_hal_espnow_deinited(self)) { return; } self->recv_buffer = m_new_obj(ringbuf_t); if (!ringbuf_alloc(self->recv_buffer, self->recv_buffer_size, true)) { m_malloc_fail(self->recv_buffer_size); } if (!common_hal_wifi_radio_get_enabled(&common_hal_wifi_radio_obj)) { common_hal_wifi_init(false); common_hal_wifi_radio_set_enabled(&common_hal_wifi_radio_obj, true); } check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_STA, self->phy_rate)); check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_AP, self->phy_rate)); check_esp_err(esp_now_init()); check_esp_err(esp_now_register_send_cb(send_cb)); check_esp_err(esp_now_register_recv_cb(recv_cb)); } // De-initialize the ESP-NOW software stack, // disable callbacks and deallocate the recv data buffers. void common_hal_espnow_deinit(espnow_obj_t *self) { if (self == NULL || common_hal_espnow_deinited(self)) { return; } check_esp_err(esp_now_unregister_send_cb()); check_esp_err(esp_now_unregister_recv_cb()); check_esp_err(esp_now_deinit()); self->recv_buffer->buf = NULL; self->recv_buffer = NULL; self->peers_count = 0; // esp_now_deinit() removes all peers. self->tx_packets = self->tx_responses; } void espnow_reset(void) { common_hal_espnow_deinit(_get_singleton()); MP_STATE_PORT(espnow_singleton) = NULL; } void common_hal_espnow_set_buffer_size(espnow_obj_t *self, mp_int_t value) { self->recv_buffer_size = mp_arg_validate_int_min(value, MAX_PACKET_LEN, MP_QSTR_buffer_size); }; void common_hal_espnow_set_phy_rate(espnow_obj_t *self, mp_int_t value) { self->phy_rate = mp_arg_validate_int_range(value, 0, WIFI_PHY_RATE_MAX - 1, MP_QSTR_phy_rate); }; void common_hal_espnow_set_pmk(espnow_obj_t *self, const uint8_t *key) { check_esp_err(esp_now_set_pmk(key)); } // --- Maintaining the peer table and reading RSSI values --- // We maintain a peers table for several reasons, to: // - support monitoring the RSSI values for all peers; and // - to return unique bytestrings for each peer which supports more efficient // application memory usage and peer handling. // Get the RSSI value from the wifi packet header static inline int8_t _get_rssi_from_wifi_packet(const uint8_t *msg) { // Warning: Secret magic to get the rssi from the wifi packet header // See espnow.c:espnow_recv_cb() at https://github.com/espressif/esp-now/ // In the wifi packet the msg comes after a wifi_promiscuous_pkt_t // and a espnow_frame_format_t. // Backtrack to get a pointer to the wifi_promiscuous_pkt_t. #define SIZEOF_ESPNOW_FRAME_FORMAT 39 #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" wifi_promiscuous_pkt_t *wifi_packet = (wifi_promiscuous_pkt_t *)( msg - SIZEOF_ESPNOW_FRAME_FORMAT - sizeof(wifi_promiscuous_pkt_t)); #pragma GCC diagnostic pop return wifi_packet->rx_ctrl.rssi; } // Lookup a peer in the peers table and return a reference to the item in the peers_table. // Add peer to the table if it is not found (may alloc memory). Will not return NULL. static mp_map_elem_t *_lookup_add_peer(espnow_obj_t *self, const uint8_t *peer) { // We do not want to allocate any new memory in the case that the peer // already exists in the peers_table (which is almost all the time). // So, we use a byte string on the stack and look that up in the dict. mp_map_t *map = mp_obj_dict_get_map(self->peers_table); mp_obj_str_t peer_obj = {{&mp_type_bytes}, 0, ESP_NOW_ETH_ALEN, peer}; mp_map_elem_t *item = mp_map_lookup(map, &peer_obj, MP_MAP_LOOKUP); if (item == NULL) { // If not found, add the peer using a new bytestring map->is_fixed = 0; // Allow to modify the dict mp_obj_t new_peer = mp_obj_new_bytes(peer, ESP_NOW_ETH_ALEN); item = mp_map_lookup(map, new_peer, MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); item->value = mp_obj_new_list(2, NULL); map->is_fixed = 1; // Relock the dict } return item; } // Update the peers table with the new rssi value from a received packet and // return a reference to the item in the peers_table. static void _update_rssi(espnow_obj_t *self, const uint8_t *peer, int8_t rssi, uint32_t time_ms) { // Lookup the peer in the device table mp_map_elem_t *item = _lookup_add_peer(self, peer); mp_obj_list_t *list = MP_OBJ_TO_PTR(item->value); list->items[0] = MP_OBJ_NEW_SMALL_INT(rssi); list->items[1] = mp_obj_new_int(time_ms); } // --- Send and Receive ESP-NOW data --- // Used by espnow_send() for sends() with sync==True. // Wait till all pending sent packet responses have been received. // ie. self->tx_responses == self->tx_packets. static void _wait_for_pending_responses(espnow_obj_t *self) { mp_uint_t t, start = mp_hal_ticks_ms(); while (self->tx_responses < self->tx_packets) { if ((t = mp_hal_ticks_ms() - start) > PENDING_RESPONSES_TIMEOUT_MS) { mp_raise_OSError(MP_ETIMEDOUT); } if (t > PENDING_RESPONSES_BUSY_POLL_MS) { // After 10ms of busy waiting give other tasks a look in. RUN_BACKGROUND_TASKS; } } } mp_obj_t common_hal_espnow_send(espnow_obj_t *self, const bool sync, const uint8_t *mac, const mp_buffer_info_t *message) { if (sync) { // Flush out any pending responses. // If the last call was sync == False there may be outstanding responses // still to be received (possible many if we just had a burst of unsync send()s). // We need to wait for all pending responses if this call has sync = True. _wait_for_pending_responses(self); } // Send the packet - try, try again if internal esp-now buffers are full. esp_err_t err; size_t saved_failures = self->tx_failures; mp_uint_t start = mp_hal_ticks_ms(); while ((ESP_ERR_ESPNOW_NO_MEM == (err = esp_now_send(mac, message->buf, message->len))) && (mp_hal_ticks_ms() - start) <= DEFAULT_SEND_TIMEOUT_MS) { RUN_BACKGROUND_TASKS; } check_esp_err(err); // Increment the sent packet count. // If mac == NULL msg will be sent to all peers EXCEPT any broadcast or multicast addresses. self->tx_packets += ((mac == NULL) ? self->peers_count : 1); if (sync) { // Wait for and tally all the expected responses from peers _wait_for_pending_responses(self); } // Return False if sync and any peers did not respond. return mp_obj_new_bool(!(sync && self->tx_failures != saved_failures)); } mp_obj_t common_hal_espnow_recv(espnow_obj_t *self) { if (!ringbuf_num_filled(self->recv_buffer)) { return mp_const_none; } // Read the packet header from the incoming buffer espnow_header_t header; if (ringbuf_get_n(self->recv_buffer, (uint8_t *)&header, sizeof(header)) != sizeof(header)) { mp_arg_error_invalid(MP_QSTR_buffer); } uint8_t msg_len = header.msg_len; uint8_t mac_buf[ESP_NOW_ETH_ALEN]; uint8_t msg_buf[msg_len]; // Check the message packet header format and read the message data if (header.magic != ESPNOW_MAGIC || msg_len > ESP_NOW_MAX_DATA_LEN || ringbuf_get_n(self->recv_buffer, mac_buf, ESP_NOW_ETH_ALEN) != ESP_NOW_ETH_ALEN || ringbuf_get_n(self->recv_buffer, msg_buf, msg_len) != msg_len) { mp_arg_error_invalid(MP_QSTR_buffer); } // Update rssi value in the peer device table _update_rssi(self, mac_buf, header.rssi, header.time_ms); mp_obj_t elems[4] = { mp_obj_new_bytes(mac_buf, ESP_NOW_ETH_ALEN), mp_obj_new_bytes(msg_buf, msg_len), MP_OBJ_NEW_SMALL_INT(header.rssi), mp_obj_new_int(header.time_ms), }; return namedtuple_make_new((const mp_obj_type_t *)&espnow_packet_type_obj, 4, 0, elems); }