/****************************************************************************** * Copyright 2013-2014 Espressif Systems (Wuxi) * * FileName: pwm.c * * Description: pwm driver * * Modification history: * 2014/5/1, v1.0 create this file. * 2016/3/2: Modifications by dpgeorge to suit MicroPython *******************************************************************************/ #include <stdio.h> #include <string.h> #include "etshal.h" #include "os_type.h" #include "gpio.h" #include "esppwm.h" #include "py/mpprint.h" #define PWM_DBG(...) //#define PWM_DBG(...) mp_printf(&mp_plat_print, __VA_ARGS__) #define ICACHE_RAM_ATTR // __attribute__((section(".text"))) #define PWM_CHANNEL 8 #define PWM_DEPTH 1023 #define PWM_FREQ_MAX 1000 #define PWM_1S 1000000 struct pwm_single_param { uint16_t gpio_set; uint16_t gpio_clear; uint32_t h_time; }; struct pwm_param { uint32_t period; uint16_t freq; uint16_t duty[PWM_CHANNEL]; }; STATIC const uint8_t pin_num[PWM_CHANNEL] = {0, 2, 4, 5, 12, 13, 14, 15}; STATIC struct pwm_single_param pwm_single_toggle[2][PWM_CHANNEL + 1]; STATIC struct pwm_single_param *pwm_single; STATIC struct pwm_param pwm; STATIC int8_t pwm_out_io_num[PWM_CHANNEL] = {-1, -1, -1, -1, -1, -1, -1, -1}; STATIC uint8_t pwm_channel_toggle[2]; STATIC uint8_t *pwm_channel; STATIC uint8_t pwm_toggle = 1; STATIC uint8_t pwm_timer_down = 1; STATIC uint8_t pwm_current_channel = 0; STATIC uint16_t pwm_gpio = 0; STATIC uint8_t pwm_channel_num = 0; //XXX: 0xffffffff/(80000000/16)=35A #define US_TO_RTC_TIMER_TICKS(t) \ ((t) ? \ (((t) > 0x35A) ? \ (((t)>>2) * ((APB_CLK_FREQ>>4)/250000) + ((t)&0x3) * ((APB_CLK_FREQ>>4)/1000000)) : \ (((t) *(APB_CLK_FREQ>>4)) / 1000000)) : \ 0) //FRC1 #define FRC1_ENABLE_TIMER BIT7 typedef enum { DIVDED_BY_1 = 0, DIVDED_BY_16 = 4, DIVDED_BY_256 = 8, } TIMER_PREDIVED_MODE; typedef enum { TM_LEVEL_INT = 1, TM_EDGE_INT = 0, } TIMER_INT_MODE; STATIC void ICACHE_FLASH_ATTR pwm_insert_sort(struct pwm_single_param pwm[], uint8 n) { uint8 i; for (i = 1; i < n; i++) { if (pwm[i].h_time < pwm[i - 1].h_time) { int8 j = i - 1; struct pwm_single_param tmp; memcpy(&tmp, &pwm[i], sizeof(struct pwm_single_param)); memcpy(&pwm[i], &pwm[i - 1], sizeof(struct pwm_single_param)); while (tmp.h_time < pwm[j].h_time) { memcpy(&pwm[j + 1], &pwm[j], sizeof(struct pwm_single_param)); j--; if (j < 0) { break; } } memcpy(&pwm[j + 1], &tmp, sizeof(struct pwm_single_param)); } } } STATIC volatile uint8 critical = 0; #define LOCK_PWM(c) do { \ while( (c)==1 ); \ (c) = 1; \ } while (0) #define UNLOCK_PWM(c) do { \ (c) = 0; \ } while (0) void ICACHE_FLASH_ATTR pwm_start(void) { uint8 i, j; PWM_DBG("--Function pwm_start() is called\n"); PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num); PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]); PWM_DBG("pwm.period:%d,pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.period,pwm.duty[0],pwm.duty[1],pwm.duty[2]); LOCK_PWM(critical); // enter critical struct pwm_single_param *local_single = pwm_single_toggle[pwm_toggle ^ 0x01]; uint8 *local_channel = &pwm_channel_toggle[pwm_toggle ^ 0x01]; // step 1: init PWM_CHANNEL+1 channels param for (i = 0; i < pwm_channel_num; i++) { uint32 us = pwm.period * pwm.duty[i] / PWM_DEPTH; local_single[i].h_time = US_TO_RTC_TIMER_TICKS(us); PWM_DBG("i:%d us:%d ht:%d\n",i,us,local_single[i].h_time); local_single[i].gpio_set = 0; local_single[i].gpio_clear = 1 << pin_num[pwm_out_io_num[i]]; } local_single[pwm_channel_num].h_time = US_TO_RTC_TIMER_TICKS(pwm.period); local_single[pwm_channel_num].gpio_set = pwm_gpio; local_single[pwm_channel_num].gpio_clear = 0; PWM_DBG("i:%d period:%d ht:%d\n",pwm_channel_num,pwm.period,local_single[pwm_channel_num].h_time); // step 2: sort, small to big pwm_insert_sort(local_single, pwm_channel_num + 1); *local_channel = pwm_channel_num + 1; PWM_DBG("1channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time); // step 3: combine same duty channels for (i = pwm_channel_num; i > 0; i--) { if (local_single[i].h_time == local_single[i - 1].h_time) { local_single[i - 1].gpio_set |= local_single[i].gpio_set; local_single[i - 1].gpio_clear |= local_single[i].gpio_clear; for (j = i + 1; j < *local_channel; j++) { memcpy(&local_single[j - 1], &local_single[j], sizeof(struct pwm_single_param)); } (*local_channel)--; } } PWM_DBG("2channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time); // step 4: cacl delt time for (i = *local_channel - 1; i > 0; i--) { local_single[i].h_time -= local_single[i - 1].h_time; } // step 5: last channel needs to clean local_single[*local_channel-1].gpio_clear = 0; // step 6: if first channel duty is 0, remove it if (local_single[0].h_time == 0) { local_single[*local_channel - 1].gpio_set &= ~local_single[0].gpio_clear; local_single[*local_channel - 1].gpio_clear |= local_single[0].gpio_clear; for (i = 1; i < *local_channel; i++) { memcpy(&local_single[i - 1], &local_single[i], sizeof(struct pwm_single_param)); } (*local_channel)--; } // if timer is down, need to set gpio and start timer if (pwm_timer_down == 1) { pwm_channel = local_channel; pwm_single = local_single; // start gpio_output_set(local_single[0].gpio_set, local_single[0].gpio_clear, pwm_gpio, 0); // yeah, if all channels' duty is 0 or 255, don't need to start timer, otherwise start... if (*local_channel != 1) { pwm_timer_down = 0; RTC_REG_WRITE(FRC1_LOAD_ADDRESS, local_single[0].h_time); } } if (pwm_toggle == 1) { pwm_toggle = 0; } else { pwm_toggle = 1; } UNLOCK_PWM(critical); // leave critical PWM_DBG("3channel:%d,single[0]:%d,[1]:%d,[2]:%d,[3]:%d\n",*local_channel,local_single[0].h_time,local_single[1].h_time,local_single[2].h_time,local_single[3].h_time); } /****************************************************************************** * FunctionName : pwm_set_duty * Description : set each channel's duty params * Parameters : uint8 duty : 0 ~ PWM_DEPTH * uint8 channel : channel index * Returns : NONE *******************************************************************************/ void ICACHE_FLASH_ATTR pwm_set_duty(uint16 duty, uint8 channel) { uint8 i; for(i=0;i<pwm_channel_num;i++){ if(pwm_out_io_num[i] == channel){ channel = i; break; } } if(i==pwm_channel_num) // non found return; LOCK_PWM(critical); // enter critical if (duty < 1) { pwm.duty[channel] = 0; } else if (duty >= PWM_DEPTH) { pwm.duty[channel] = PWM_DEPTH; } else { pwm.duty[channel] = duty; } UNLOCK_PWM(critical); // leave critical } /****************************************************************************** * FunctionName : pwm_set_freq * Description : set pwm frequency * Parameters : uint16 freq : 100hz typically * Returns : NONE *******************************************************************************/ void ICACHE_FLASH_ATTR pwm_set_freq(uint16 freq, uint8 channel) { LOCK_PWM(critical); // enter critical if (freq > PWM_FREQ_MAX) { pwm.freq = PWM_FREQ_MAX; } else if (freq < 1) { pwm.freq = 1; } else { pwm.freq = freq; } pwm.period = PWM_1S / pwm.freq; UNLOCK_PWM(critical); // leave critical } /****************************************************************************** * FunctionName : pwm_get_duty * Description : get duty of each channel * Parameters : uint8 channel : channel index * Returns : NONE *******************************************************************************/ uint16 ICACHE_FLASH_ATTR pwm_get_duty(uint8 channel) { uint8 i; for(i=0;i<pwm_channel_num;i++){ if(pwm_out_io_num[i] == channel){ channel = i; break; } } if(i==pwm_channel_num) // non found return 0; return pwm.duty[channel]; } /****************************************************************************** * FunctionName : pwm_get_freq * Description : get pwm frequency * Parameters : NONE * Returns : uint16 : pwm frequency *******************************************************************************/ uint16 ICACHE_FLASH_ATTR pwm_get_freq(uint8 channel) { return pwm.freq; } /****************************************************************************** * FunctionName : pwm_period_timer * Description : pwm period timer function, output high level, * start each channel's high level timer * Parameters : NONE * Returns : NONE *******************************************************************************/ STATIC void ICACHE_RAM_ATTR pwm_tim1_intr_handler(void *dummy) { (void)dummy; uint8 local_toggle = pwm_toggle; // pwm_toggle may change outside RTC_CLR_REG_MASK(FRC1_INT_ADDRESS, FRC1_INT_CLR_MASK); if (pwm_current_channel >= (*pwm_channel - 1)) { // *pwm_channel may change outside pwm_single = pwm_single_toggle[local_toggle]; pwm_channel = &pwm_channel_toggle[local_toggle]; gpio_output_set(pwm_single[*pwm_channel - 1].gpio_set, pwm_single[*pwm_channel - 1].gpio_clear, pwm_gpio, 0); pwm_current_channel = 0; if (*pwm_channel != 1) { RTC_REG_WRITE(FRC1_LOAD_ADDRESS, pwm_single[pwm_current_channel].h_time); } else { pwm_timer_down = 1; } } else { gpio_output_set(pwm_single[pwm_current_channel].gpio_set, pwm_single[pwm_current_channel].gpio_clear, pwm_gpio, 0); pwm_current_channel++; RTC_REG_WRITE(FRC1_LOAD_ADDRESS, pwm_single[pwm_current_channel].h_time); } } /****************************************************************************** * FunctionName : pwm_init * Description : pwm gpio, params and timer initialization * Parameters : uint16 freq : pwm freq param * uint16 *duty : each channel's duty * Returns : NONE *******************************************************************************/ void ICACHE_FLASH_ATTR pwm_init(void) { uint8 i; RTC_REG_WRITE(FRC1_CTRL_ADDRESS, //FRC2_AUTO_RELOAD| DIVDED_BY_16 | FRC1_ENABLE_TIMER | TM_EDGE_INT); RTC_REG_WRITE(FRC1_LOAD_ADDRESS, 0); for (i = 0; i < PWM_CHANNEL; i++) { pwm_gpio = 0; pwm.duty[i] = 0; } pwm_set_freq(500, 0); pwm_start(); ETS_FRC_TIMER1_INTR_ATTACH(pwm_tim1_intr_handler, NULL); TM1_EDGE_INT_ENABLE(); ETS_FRC1_INTR_ENABLE(); } int ICACHE_FLASH_ATTR pwm_add(uint8_t pin_id, uint32_t pin_mux, uint32_t pin_func){ PWM_DBG("--Function pwm_add() is called. channel:%d\n", channel); PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num); PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]); PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]); int channel = -1; for (int i = 0; i < PWM_CHANNEL; ++i) { if (pin_num[i] == pin_id) { channel = i; break; } } if (channel == -1) { return -1; } uint8 i; for(i=0;i<PWM_CHANNEL;i++){ if(pwm_out_io_num[i]==channel) // already exist return channel; if(pwm_out_io_num[i] == -1){ // empty exist LOCK_PWM(critical); // enter critical pwm_out_io_num[i] = channel; pwm.duty[i] = 0; pwm_gpio |= (1 << pin_num[channel]); PIN_FUNC_SELECT(pin_mux, pin_func); GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[channel])), GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[channel]))) & (~ GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE))); //disable open drain; pwm_channel_num++; UNLOCK_PWM(critical); // leave critical return channel; } } return -1; } bool ICACHE_FLASH_ATTR pwm_delete(uint8 channel){ PWM_DBG("--Function pwm_delete() is called. channel:%d\n", channel); PWM_DBG("pwm_gpio:%x,pwm_channel_num:%d\n",pwm_gpio,pwm_channel_num); PWM_DBG("pwm_out_io_num[0]:%d,[1]:%d,[2]:%d\n",pwm_out_io_num[0],pwm_out_io_num[1],pwm_out_io_num[2]); PWM_DBG("pwm.duty[0]:%d,[1]:%d,[2]:%d\n",pwm.duty[0],pwm.duty[1],pwm.duty[2]); uint8 i,j; for(i=0;i<pwm_channel_num;i++){ if(pwm_out_io_num[i]==channel){ // exist LOCK_PWM(critical); // enter critical pwm_out_io_num[i] = -1; pwm_gpio &= ~(1 << pin_num[channel]); //clear the bit for(j=i;j<pwm_channel_num-1;j++){ pwm_out_io_num[j] = pwm_out_io_num[j+1]; pwm.duty[j] = pwm.duty[j+1]; } pwm_out_io_num[pwm_channel_num-1] = -1; pwm.duty[pwm_channel_num-1] = 0; pwm_channel_num--; UNLOCK_PWM(critical); // leave critical return true; } } // non found return true; }