/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * Uses code from Micropython, Copyright (c) 2013-2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "common-hal/pulseio/PWMOut.h" #include "shared-bindings/pulseio/PWMOut.h" #include "supervisor/shared/translate.h" #include "shared-bindings/microcontroller/__init__.h" #include "stm32f4xx_hal.h" #include "common-hal/microcontroller/Pin.h" #define ALL_CLOCKS 0xFFFF STATIC uint8_t reserved_tim[TIM_BANK_ARRAY_LEN]; STATIC uint32_t tim_frequencies[TIM_BANK_ARRAY_LEN]; STATIC bool never_reset_tim[TIM_BANK_ARRAY_LEN]; STATIC void tim_clock_enable(uint16_t mask); STATIC void tim_clock_disable(uint16_t mask); //-------- //STATICS //-------- // Get the frequency (in Hz) of the source clock for the given timer. // On STM32F405/407/415/417 there are 2 cases for how the clock freq is set. // If the APB prescaler is 1, then the timer clock is equal to its respective // APB clock. Otherwise (APB prescaler > 1) the timer clock is twice its // respective APB clock. See DM00031020 Rev 4, page 115. STATIC uint32_t timer_get_source_freq(uint32_t tim_id) { uint32_t source, clk_div; if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) { // TIM{1,8,9,10,11} are on APB2 source = HAL_RCC_GetPCLK2Freq(); clk_div = RCC->CFGR & RCC_CFGR_PPRE2; } else { // TIM{2,3,4,5,6,7,12,13,14} are on APB1 source = HAL_RCC_GetPCLK1Freq(); clk_div = RCC->CFGR & RCC_CFGR_PPRE1; } if (clk_div != 0) { // APB prescaler for this timer is > 1 source *= 2; } return source; } STATIC uint32_t timer_get_internal_duty(uint16_t duty, uint32_t period) { //duty cycle is duty/0xFFFF fraction x (number of pulses per period) return (duty*period)/((1<<16)-1); } STATIC void timer_get_optimal_divisors(uint32_t*period, uint32_t*prescaler, uint32_t frequency, uint32_t source_freq) { //Find the largest possible period supported by this frequency for (int i=0; i<(1 << 16);i++) { *period = source_freq/(i*frequency); if (*period < (1 << 16) && *period>=2) { *prescaler = i; break; } } if (*prescaler == 0) { mp_raise_ValueError(translate("Invalid frequency supplied")); } } //-------- //COMMON HAL //-------- void pwmout_reset(void) { uint16_t never_reset_mask = 0x00; for(int i=0;itim = &l_tim; break; } } //handle valid/invalid timer instance if (self->tim!=NULL) { //create instance TIMx = mcu_tim_banks[self->tim->tim_index-1]; //reserve timer/channel if (variable_frequency) { reserved_tim[self->tim->tim_index-1] = 0x0F; } else { reserved_tim[self->tim->tim_index-1] |= 1<<(self->tim->channel_index-1); } tim_frequencies[self->tim->tim_index-1] = frequency; } else { //no match found if (tim_chan_taken) { mp_raise_ValueError(translate("No more timers available on this pin.")); } else if (tim_taken_f_mismatch) { mp_raise_ValueError(translate("Frequency must be the same as as the existing PWMOut using this timer")); } else if (var_freq_mismatch) { mp_raise_ValueError(translate("Cannot vary frequency on a timer that is already in use")); } else { mp_raise_ValueError(translate("Invalid pins")); } } GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = pin_mask(pin->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Alternate = self->tim->altfn_index; HAL_GPIO_Init(pin_port(pin->port), &GPIO_InitStruct); tim_clock_enable(1<<(self->tim->tim_index - 1)); //translate channel into handle value self->channel = 4 * (self->tim->channel_index - 1); uint32_t prescaler = 0; //prescaler is 15 bit uint32_t period = 0; //period is 16 bit timer_get_optimal_divisors(&period, &prescaler,frequency,timer_get_source_freq(self->tim->tim_index)); //Timer init self->handle.Instance = TIMx; self->handle.Init.Period = period - 1; self->handle.Init.Prescaler = prescaler - 1; self->handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; self->handle.Init.CounterMode = TIM_COUNTERMODE_UP; self->handle.Init.RepetitionCounter = 0; //only run init if this is the first instance of this timer if (first_time_setup) { if (HAL_TIM_PWM_Init(&self->handle) != HAL_OK) { mp_raise_ValueError(translate("Could not initialize timer")); } } //Channel/PWM init self->chan_handle.OCMode = TIM_OCMODE_PWM1; self->chan_handle.Pulse = timer_get_internal_duty(duty, period); self->chan_handle.OCPolarity = TIM_OCPOLARITY_LOW; self->chan_handle.OCFastMode = TIM_OCFAST_DISABLE; self->chan_handle.OCNPolarity = TIM_OCNPOLARITY_LOW; // needed for TIM1 and TIM8 self->chan_handle.OCIdleState = TIM_OCIDLESTATE_SET; // needed for TIM1 and TIM8 self->chan_handle.OCNIdleState = TIM_OCNIDLESTATE_SET; // needed for TIM1 and TIM8 if (HAL_TIM_PWM_ConfigChannel(&self->handle, &self->chan_handle, self->channel) != HAL_OK) { mp_raise_ValueError(translate("Could not initialize channel")); } if (HAL_TIM_PWM_Start(&self->handle, self->channel) != HAL_OK) { mp_raise_ValueError(translate("Could not start PWM")); } self->variable_frequency = variable_frequency; self->frequency = frequency; self->duty_cycle = duty; self->period = period; return PWMOUT_OK; } void common_hal_pulseio_pwmout_never_reset(pulseio_pwmout_obj_t *self) { for(size_t i = 0 ; i < TIM_BANK_ARRAY_LEN; i++) { if (mcu_tim_banks[i] == self->handle.Instance) { never_reset_tim[i] = true; never_reset_pin_number(self->tim->pin->port, self->tim->pin->number); break; } } } void common_hal_pulseio_pwmout_reset_ok(pulseio_pwmout_obj_t *self) { for(size_t i = 0 ; i < TIM_BANK_ARRAY_LEN; i++) { if (mcu_tim_banks[i] == self->handle.Instance) { never_reset_tim[i] = false; break; } } } bool common_hal_pulseio_pwmout_deinited(pulseio_pwmout_obj_t* self) { return self->tim == mp_const_none; } void common_hal_pulseio_pwmout_deinit(pulseio_pwmout_obj_t* self) { if (common_hal_pulseio_pwmout_deinited(self)) { return; } //var freq shuts down entire timer, others just their channel if (self->variable_frequency) { reserved_tim[self->tim->tim_index-1] = 0x00; } else { reserved_tim[self->tim->tim_index-1] &= ~(1<tim->channel_index); HAL_TIM_PWM_Stop(&self->handle, self->channel); } reset_pin_number(self->tim->pin->port,self->tim->pin->number); self->tim = mp_const_none; //if reserved timer has no active channels, we can disable it if (!reserved_tim[self->tim->tim_index-1]) { tim_frequencies[self->tim->tim_index-1] = 0x00; tim_clock_disable(1<<(self->tim->tim_index-1)); } } void common_hal_pulseio_pwmout_set_duty_cycle(pulseio_pwmout_obj_t* self, uint16_t duty) { uint32_t internal_duty_cycle = timer_get_internal_duty(duty, self->period); __HAL_TIM_SET_COMPARE(&self->handle, self->channel, internal_duty_cycle); self->duty_cycle = duty; } uint16_t common_hal_pulseio_pwmout_get_duty_cycle(pulseio_pwmout_obj_t* self) { return self->duty_cycle; } void common_hal_pulseio_pwmout_set_frequency(pulseio_pwmout_obj_t* self, uint32_t frequency) { //don't halt setup for the same frequency if (frequency == self->frequency) return; uint32_t prescaler = 0; uint32_t period = 0; timer_get_optimal_divisors(&period, &prescaler,frequency,timer_get_source_freq(self->tim->tim_index)); //shut down HAL_TIM_PWM_Stop(&self->handle, self->channel); //Only change altered values self->handle.Init.Period = period - 1; self->handle.Init.Prescaler = prescaler - 1; //restart everything, adjusting for new speed if (HAL_TIM_PWM_Init(&self->handle) != HAL_OK) { mp_raise_ValueError(translate("Could not re-init timer")); } self->chan_handle.Pulse = timer_get_internal_duty(self->duty_cycle, period); if (HAL_TIM_PWM_ConfigChannel(&self->handle, &self->chan_handle, self->channel) != HAL_OK) { mp_raise_ValueError(translate("Could not re-init channel")); } if (HAL_TIM_PWM_Start(&self->handle, self->channel) != HAL_OK) { mp_raise_ValueError(translate("Could not restart PWM")); } tim_frequencies[self->tim->tim_index-1] = frequency; self->frequency = frequency; self->period = period; } uint32_t common_hal_pulseio_pwmout_get_frequency(pulseio_pwmout_obj_t* self) { return self->frequency; } bool common_hal_pulseio_pwmout_get_variable_frequency(pulseio_pwmout_obj_t* self) { return self->variable_frequency; } STATIC void tim_clock_enable(uint16_t mask) { #ifdef TIM1 if (mask & 1<<0) __HAL_RCC_TIM1_CLK_ENABLE(); #endif #ifdef TIM2 if (mask & 1<<1) __HAL_RCC_TIM2_CLK_ENABLE(); #endif #ifdef TIM3 if (mask & 1<<2) __HAL_RCC_TIM3_CLK_ENABLE(); #endif #ifdef TIM4 if (mask & 1<<3) __HAL_RCC_TIM4_CLK_ENABLE(); #endif #ifdef TIM5 if (mask & 1<<4) __HAL_RCC_TIM5_CLK_ENABLE(); #endif //6 and 7 are reserved ADC timers #ifdef TIM8 if (mask & 1<<7) __HAL_RCC_TIM8_CLK_ENABLE(); #endif #ifdef TIM9 if (mask & 1<<8) __HAL_RCC_TIM9_CLK_ENABLE(); #endif #ifdef TIM10 if (mask & 1<<9) __HAL_RCC_TIM10_CLK_ENABLE(); #endif #ifdef TIM11 if (mask & 1<<10) __HAL_RCC_TIM11_CLK_ENABLE(); #endif #ifdef TIM12 if (mask & 1<<11) __HAL_RCC_TIM12_CLK_ENABLE(); #endif #ifdef TIM13 if (mask & 1<<12) __HAL_RCC_TIM13_CLK_ENABLE(); #endif #ifdef TIM14 if (mask & 1<<13) __HAL_RCC_TIM14_CLK_ENABLE(); #endif } STATIC void tim_clock_disable(uint16_t mask) { #ifdef TIM1 if (mask & 1<<0) __HAL_RCC_TIM1_CLK_DISABLE(); #endif #ifdef TIM2 if (mask & 1<<1) __HAL_RCC_TIM2_CLK_DISABLE(); #endif #ifdef TIM3 if (mask & 1<<2) __HAL_RCC_TIM3_CLK_DISABLE(); #endif #ifdef TIM4 if (mask & 1<<3) __HAL_RCC_TIM4_CLK_DISABLE(); #endif #ifdef TIM5 if (mask & 1<<4) __HAL_RCC_TIM5_CLK_DISABLE(); #endif //6 and 7 are reserved ADC timers #ifdef TIM8 if (mask & 1<<7) __HAL_RCC_TIM8_CLK_DISABLE(); #endif #ifdef TIM9 if (mask & 1<<8) __HAL_RCC_TIM9_CLK_DISABLE(); #endif #ifdef TIM10 if (mask & 1<<9) __HAL_RCC_TIM10_CLK_DISABLE(); #endif #ifdef TIM11 if (mask & 1<<10) __HAL_RCC_TIM11_CLK_DISABLE(); #endif #ifdef TIM12 if (mask & 1<<11) __HAL_RCC_TIM12_CLK_DISABLE(); #endif #ifdef TIM13 if (mask & 1<<12) __HAL_RCC_TIM13_CLK_DISABLE(); #endif #ifdef TIM14 if (mask & 1<<13) __HAL_RCC_TIM14_CLK_DISABLE(); #endif }