#include #include #include #include #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "obj.h" #include "parsenum.h" #include "mpz.h" #include "objint.h" #include "runtime0.h" #include "runtime.h" #if MICROPY_ENABLE_FLOAT #include #endif // This dispatcher function is expected to be independent of the implementation of long int STATIC mp_obj_t mp_obj_int_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { // TODO check n_kw == 0 switch (n_args) { case 0: return MP_OBJ_NEW_SMALL_INT(0); case 1: if (MP_OBJ_IS_STR(args[0])) { // a string, parse it uint l; const char *s = mp_obj_str_get_data(args[0], &l); return mp_parse_num_integer(s, l, 0); #if MICROPY_ENABLE_FLOAT } else if (MP_OBJ_IS_TYPE(args[0], &mp_type_float)) { return MP_OBJ_NEW_SMALL_INT((machine_int_t)(MICROPY_FLOAT_C_FUN(trunc)(mp_obj_float_get(args[0])))); #endif } else { return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0])); } case 2: { // should be a string, parse it // TODO proper error checking of argument types uint l; const char *s = mp_obj_str_get_data(args[0], &l); return mp_parse_num_integer(s, l, mp_obj_get_int(args[1])); } default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "int takes at most 2 arguments, %d given", n_args)); } } void mp_obj_int_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { // The size of this buffer is rather arbitrary. If it's not large // enough, a dynamic one will be allocated. char stack_buf[sizeof(machine_int_t) * 4]; char *buf = stack_buf; int buf_size = sizeof(stack_buf); int fmt_size; char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0'); print(env, "%s", str); if (buf != stack_buf) { m_free(buf, buf_size); } } #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG typedef mp_longint_impl_t fmt_int_t; #else typedef mp_small_int_t fmt_int_t; #endif STATIC const uint log_base2_floor[] = { 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5 }; STATIC uint int_as_str_size_formatted(uint base, const char *prefix, char comma) { if (base < 2 || base > 32) { return 0; } uint num_digits = sizeof(fmt_int_t) * 8 / log_base2_floor[base] + 1; uint num_commas = comma ? num_digits / 3: 0; uint prefix_len = prefix ? strlen(prefix) : 0; return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte } // This routine expects you to pass in a buffer and size (in *buf and buf_size). // If, for some reason, this buffer is too small, then it will allocate a // buffer and return the allocated buffer and size in *buf and *buf_size. It // is the callers responsibility to free this allocated buffer. // // The resulting formatted string will be returned from this function and the // formatted size will be in *fmt_size. char *mp_obj_int_formatted(char **buf, int *buf_size, int *fmt_size, mp_obj_t self_in, int base, const char *prefix, char base_char, char comma) { fmt_int_t num; if (MP_OBJ_IS_SMALL_INT(self_in)) { // A small int; get the integer value to format. num = mp_obj_get_int(self_in); #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE } else if (MP_OBJ_IS_TYPE(self_in, &mp_type_int)) { // Not a small int. #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG mp_obj_int_t *self = self_in; // Get the value to format; mp_obj_get_int truncates to machine_int_t. num = self->val; #else // Delegate to the implementation for the long int. return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma); #endif #endif } else { // Not an int. buf[0] = '\0'; *fmt_size = 0; return *buf; } char sign = '\0'; if (num < 0) { num = -num; sign = '-'; } uint needed_size = int_as_str_size_formatted(base, prefix, comma); if (needed_size > *buf_size) { *buf = m_new(char, needed_size); *buf_size = needed_size; } char *str = *buf; char *b = str + needed_size; *(--b) = '\0'; char *last_comma = b; if (num == 0) { *(--b) = '0'; } else { do { int c = num % base; num /= base; if (c >= 10) { c += base_char - 10; } else { c += '0'; } *(--b) = c; if (comma && num != 0 && b > str && (last_comma - b) == 3) { *(--b) = comma; last_comma = b; } } while (b > str && num != 0); } if (prefix) { size_t prefix_len = strlen(prefix); char *p = b - prefix_len; if (p > str) { b = p; while (*prefix) { *p++ = *prefix++; } } } if (sign && b > str) { *(--b) = sign; } *fmt_size = *buf + needed_size - b - 1; return b; } #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE bool mp_obj_int_is_positive(mp_obj_t self_in) { return mp_obj_get_int(self_in) >= 0; } // This is called for operations on SMALL_INT that are not handled by mp_unary_op mp_obj_t mp_obj_int_unary_op(int op, mp_obj_t o_in) { return MP_OBJ_NOT_SUPPORTED; } // This is called for operations on SMALL_INT that are not handled by mp_binary_op mp_obj_t mp_obj_int_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) { return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in); } // This is called only with strings whose value doesn't fit in SMALL_INT mp_obj_t mp_obj_new_int_from_long_str(const char *s) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "long int not supported in this build")); return mp_const_none; } // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT) mp_obj_t mp_obj_new_int_from_ll(long long val) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow")); return mp_const_none; } mp_obj_t mp_obj_new_int_from_uint(machine_uint_t value) { // SMALL_INT accepts only signed numbers, of one bit less size // then word size, which totals 2 bits less for unsigned numbers. if ((value & (WORD_MSBIT_HIGH | (WORD_MSBIT_HIGH >> 1))) == 0) { return MP_OBJ_NEW_SMALL_INT(value); } nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow")); return mp_const_none; } mp_obj_t mp_obj_new_int(machine_int_t value) { if (MP_OBJ_FITS_SMALL_INT(value)) { return MP_OBJ_NEW_SMALL_INT(value); } nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow")); return mp_const_none; } machine_int_t mp_obj_int_get(mp_obj_t self_in) { return MP_OBJ_SMALL_INT_VALUE(self_in); } machine_int_t mp_obj_int_get_checked(mp_obj_t self_in) { return MP_OBJ_SMALL_INT_VALUE(self_in); } #if MICROPY_ENABLE_FLOAT mp_float_t mp_obj_int_as_float(mp_obj_t self_in) { return MP_OBJ_SMALL_INT_VALUE(self_in); } #endif #endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE // This dispatcher function is expected to be independent of the implementation of long int // It handles the extra cases for integer-like arithmetic mp_obj_t mp_obj_int_binary_op_extra_cases(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) { if (rhs_in == mp_const_false) { // false acts as 0 return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0)); } else if (rhs_in == mp_const_true) { // true acts as 0 return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1)); } else if (op == MP_BINARY_OP_MULTIPLY) { if (MP_OBJ_IS_STR(rhs_in) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_list)) { // multiply is commutative for these types, so delegate to them return mp_binary_op(op, rhs_in, lhs_in); } } return MP_OBJ_NOT_SUPPORTED; } // this is a classmethod STATIC mp_obj_t int_from_bytes(uint n_args, const mp_obj_t *args) { // TODO: Support long ints // TODO: Support byteorder param (assumes 'little' at the moment) // TODO: Support signed param (assumes signed=False at the moment) // get the buffer info mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[1], &bufinfo); // convert the bytes to an integer machine_uint_t value = 0; for (const byte* buf = bufinfo.buf + bufinfo.len - 1; buf >= (byte*)bufinfo.buf; buf--) { value = (value << 8) | *buf; } return mp_obj_new_int_from_uint(value); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 2, 3, int_from_bytes); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, (const mp_obj_t)&int_from_bytes_fun_obj); STATIC mp_obj_t int_to_bytes(uint n_args, const mp_obj_t *args) { machine_int_t val = mp_obj_int_get_checked(args[0]); uint len = MP_OBJ_SMALL_INT_VALUE(args[1]); byte *data; // TODO: Support long ints // TODO: Support byteorder param // TODO: Support signed param mp_obj_t o = mp_obj_str_builder_start(&mp_type_bytes, len, &data); memset(data, 0, len); memcpy(data, &val, len < sizeof(machine_int_t) ? len : sizeof(machine_int_t)); return mp_obj_str_builder_end(o); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_to_bytes_obj, 2, 4, int_to_bytes); STATIC const mp_map_elem_t int_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_from_bytes), (mp_obj_t)&int_from_bytes_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_to_bytes), (mp_obj_t)&int_to_bytes_obj }, }; STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table); const mp_obj_type_t mp_type_int = { { &mp_type_type }, .name = MP_QSTR_int, .print = mp_obj_int_print, .make_new = mp_obj_int_make_new, .unary_op = mp_obj_int_unary_op, .binary_op = mp_obj_int_binary_op, .locals_dict = (mp_obj_t)&int_locals_dict, };