#include <stdlib.h> #include <assert.h> #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "obj.h" #include "runtime.h" #include "bc.h" #include "objgenerator.h" /******************************************************************************/ /* generator wrapper */ typedef struct _mp_obj_gen_wrap_t { mp_obj_base_t base; mp_obj_t *fun; } mp_obj_gen_wrap_t; mp_obj_t mp_obj_new_gen_instance(const byte *bytecode, uint n_args, const mp_obj_t *args, uint n_args2, const mp_obj_t *args2); STATIC mp_obj_t gen_wrap_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { mp_obj_gen_wrap_t *self = self_in; mp_obj_t self_fun = self->fun; assert(MP_OBJ_IS_TYPE(self_fun, &mp_type_fun_bc)); int bc_n_args; const byte *bc_code; mp_obj_fun_bc_get(self_fun, &bc_n_args, &bc_code); const mp_obj_t *args1, *args2; uint len1, len2; if (!mp_obj_fun_prepare_simple_args(self_fun, n_args, n_kw, args, &len1, &args1, &len2, &args2)) { assert(0); } return mp_obj_new_gen_instance(bc_code, len1, args1, len2, args2); } const mp_obj_type_t mp_type_gen_wrap = { { &mp_type_type }, .name = MP_QSTR_generator, .call = gen_wrap_call, }; mp_obj_t mp_obj_new_gen_wrap(mp_obj_t fun) { mp_obj_gen_wrap_t *o = m_new_obj(mp_obj_gen_wrap_t); o->base.type = &mp_type_gen_wrap; o->fun = fun; return o; } /******************************************************************************/ /* generator instance */ typedef struct _mp_obj_gen_instance_t { mp_obj_base_t base; const byte *code_info; const byte *ip; mp_obj_t *sp; // bit 0 is saved currently_in_except_block value mp_exc_stack_t *exc_sp; uint n_state; // Variable-length mp_obj_t state[0]; // Variable-length, never accessed by name, only as (void*)(state + n_state) mp_exc_stack_t exc_state[0]; } mp_obj_gen_instance_t; void gen_instance_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { print(env, "<generator object 'fun-name' at %p>", self_in); } mp_obj_t gen_instance_getiter(mp_obj_t self_in) { return self_in; } mp_vm_return_kind_t mp_obj_gen_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_gen_instance)); mp_obj_gen_instance_t *self = self_in; if (self->ip == 0) { *ret_val = MP_OBJ_NULL; return MP_VM_RETURN_NORMAL; } if (self->sp == self->state - 1) { if (send_value != mp_const_none) { nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "can't send non-None value to a just-started generator")); } } else { *self->sp = send_value; } mp_vm_return_kind_t ret_kind = mp_execute_byte_code_2(self->code_info, &self->ip, &self->state[self->n_state - 1], &self->sp, (mp_exc_stack_t*)(self->state + self->n_state), &self->exc_sp, throw_value); switch (ret_kind) { case MP_VM_RETURN_NORMAL: // Explicitly mark generator as completed. If we don't do this, // subsequent next() may re-execute statements after last yield // again and again, leading to side effects. // TODO: check how return with value behaves under such conditions // in CPython. self->ip = 0; *ret_val = *self->sp; break; case MP_VM_RETURN_YIELD: *ret_val = *self->sp; break; case MP_VM_RETURN_EXCEPTION: self->ip = 0; *ret_val = self->state[self->n_state - 1]; break; default: assert(0); *ret_val = mp_const_none; break; } return ret_kind; } STATIC mp_obj_t gen_resume_and_raise(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value) { mp_obj_t ret; switch (mp_obj_gen_resume(self_in, send_value, throw_value, &ret)) { case MP_VM_RETURN_NORMAL: // Optimize return w/o value in case generator is used in for loop if (ret == mp_const_none) { return MP_OBJ_NULL; } else { nlr_jump(mp_obj_new_exception_args(&mp_type_StopIteration, 1, &ret)); } case MP_VM_RETURN_YIELD: return ret; case MP_VM_RETURN_EXCEPTION: // TODO: Optimization of returning MP_OBJ_NULL is really part // of mp_iternext() protocol, but this function is called by other methods // too, which may not handled MP_OBJ_NULL. if (mp_obj_is_subclass_fast(mp_obj_get_type(ret), &mp_type_StopIteration)) { return MP_OBJ_NULL; } else { nlr_jump(ret); } default: assert(0); return mp_const_none; } } mp_obj_t gen_instance_iternext(mp_obj_t self_in) { return gen_resume_and_raise(self_in, mp_const_none, MP_OBJ_NULL); } STATIC mp_obj_t gen_instance_send(mp_obj_t self_in, mp_obj_t send_value) { mp_obj_t ret = gen_resume_and_raise(self_in, send_value, MP_OBJ_NULL); if (ret == MP_OBJ_NULL) { nlr_jump(mp_obj_new_exception(&mp_type_StopIteration)); } else { return ret; } } STATIC MP_DEFINE_CONST_FUN_OBJ_2(gen_instance_send_obj, gen_instance_send); STATIC mp_obj_t gen_instance_close(mp_obj_t self_in); STATIC mp_obj_t gen_instance_throw(uint n_args, const mp_obj_t *args) { mp_obj_t exc = (n_args == 2) ? args[1] : args[2]; exc = mp_make_raise_obj(exc); if (mp_obj_is_subclass_fast(mp_obj_get_type(exc), &mp_type_GeneratorExit)) { // Throwing GeneratorExit is equivalent of calling close aka // GeneratorExit should be handled specially // TODO: Calling .close() will throw new exception instance, not one // given to throw, which is not ok. return gen_instance_close(args[0]); } mp_obj_t ret = gen_resume_and_raise(args[0], mp_const_none, exc); if (ret == MP_OBJ_NULL) { nlr_jump(mp_obj_new_exception(&mp_type_StopIteration)); } else { return ret; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(gen_instance_throw_obj, 2, 4, gen_instance_throw); STATIC mp_obj_t gen_instance_close(mp_obj_t self_in) { mp_obj_t ret; switch (mp_obj_gen_resume(self_in, mp_const_none, (mp_obj_t)&mp_const_GeneratorExit_obj, &ret)) { case MP_VM_RETURN_YIELD: nlr_jump(mp_obj_new_exception_msg(&mp_type_RuntimeError, "generator ignored GeneratorExit")); // Swallow StopIteration & GeneratorExit (== successful close), and re-raise any other case MP_VM_RETURN_EXCEPTION: // ret should always be an instance of an exception class if (mp_obj_is_subclass_fast(mp_obj_get_type(ret), &mp_type_GeneratorExit) || mp_obj_is_subclass_fast(mp_obj_get_type(ret), &mp_type_StopIteration)) { return mp_const_none; } nlr_jump(ret); default: // The only choice left is MP_VM_RETURN_NORMAL which is successful close return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(gen_instance_close_obj, gen_instance_close); STATIC const mp_map_elem_t gen_instance_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_close), (mp_obj_t)&gen_instance_close_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&gen_instance_send_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_throw), (mp_obj_t)&gen_instance_throw_obj }, }; STATIC MP_DEFINE_CONST_DICT(gen_instance_locals_dict, gen_instance_locals_dict_table); const mp_obj_type_t mp_type_gen_instance = { { &mp_type_type }, .name = MP_QSTR_generator, .print = gen_instance_print, .getiter = gen_instance_getiter, .iternext = gen_instance_iternext, .locals_dict = (mp_obj_t)&gen_instance_locals_dict, }; mp_obj_t mp_obj_new_gen_instance(const byte *bytecode, uint n_args, const mp_obj_t *args, uint n_args2, const mp_obj_t *args2) { const byte *code_info = bytecode; // get code info size, and skip the line number table machine_uint_t code_info_size = bytecode[0] | (bytecode[1] << 8) | (bytecode[2] << 16) | (bytecode[3] << 24); bytecode += code_info_size; // bytecode prelude: get state size and exception stack size machine_uint_t n_state = bytecode[0] | (bytecode[1] << 8); machine_uint_t n_exc_stack = bytecode[2] | (bytecode[3] << 8); bytecode += 4; // bytecode prelude: initialise closed over variables // TODO // for now we just make sure there are no cells variables // need to work out how to implement closed over variables in generators assert(bytecode[0] == 0); bytecode += 1; mp_obj_gen_instance_t *o = m_new_obj_var(mp_obj_gen_instance_t, byte, n_state * sizeof(mp_obj_t) + n_exc_stack * sizeof(mp_exc_stack_t)); o->base.type = &mp_type_gen_instance; o->code_info = code_info; o->ip = bytecode; o->sp = &o->state[0] - 1; // sp points to top of stack, which starts off 1 below the state o->exc_sp = (mp_exc_stack_t*)(o->state + n_state) - 1; o->n_state = n_state; // copy args to end of state array, in reverse (that's how mp_execute_byte_code_2 needs it) for (uint i = 0; i < n_args; i++) { o->state[n_state - 1 - i] = args[i]; } for (uint i = 0; i < n_args2; i++) { o->state[n_state - 1 - n_args - i] = args2[i]; } return o; }