/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2015 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include "py/nlr.h" #include "py/lexer.h" #include "py/parse.h" #include "py/parsenum.h" #include "py/smallint.h" #include "py/runtime.h" #include "py/builtin.h" #define RULE_ACT_ARG_MASK (0x0f) #define RULE_ACT_KIND_MASK (0x30) #define RULE_ACT_ALLOW_IDENT (0x40) #define RULE_ACT_ADD_BLANK (0x80) #define RULE_ACT_OR (0x10) #define RULE_ACT_AND (0x20) #define RULE_ACT_LIST (0x30) #define RULE_ARG_KIND_MASK (0xf000) #define RULE_ARG_ARG_MASK (0x0fff) #define RULE_ARG_TOK (0x1000) #define RULE_ARG_RULE (0x2000) #define RULE_ARG_OPT_RULE (0x3000) #define ADD_BLANK_NODE(rule) ((rule->act & RULE_ACT_ADD_BLANK) != 0) // (un)comment to use rule names; for debugging //#define USE_RULE_NAME (1) typedef struct _rule_t { byte rule_id; byte act; #ifdef USE_RULE_NAME const char *rule_name; #endif uint16_t arg[]; } rule_t; enum { #define DEF_RULE(rule, comp, kind, ...) RULE_##rule, #include "py/grammar.h" #undef DEF_RULE RULE_maximum_number_of, RULE_string, // special node for non-interned string RULE_bytes, // special node for non-interned bytes RULE_const_object, // special node for a constant, generic Python object }; #define ident (RULE_ACT_ALLOW_IDENT) #define blank (RULE_ACT_ADD_BLANK) #define or(n) (RULE_ACT_OR | n) #define and(n) (RULE_ACT_AND | n) #define one_or_more (RULE_ACT_LIST | 2) #define list (RULE_ACT_LIST | 1) #define list_with_end (RULE_ACT_LIST | 3) #define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t) #define rule(r) (RULE_ARG_RULE | RULE_##r) #define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r) #ifdef USE_RULE_NAME #define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, #rule, { __VA_ARGS__ } }; #else #define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, { __VA_ARGS__ } }; #endif #include "py/grammar.h" #undef or #undef and #undef list #undef list_with_end #undef tok #undef rule #undef opt_rule #undef one_or_more #undef DEF_RULE STATIC const rule_t *rules[] = { #define DEF_RULE(rule, comp, kind, ...) &rule_##rule, #include "py/grammar.h" #undef DEF_RULE }; typedef struct _rule_stack_t { size_t src_line : 8 * sizeof(size_t) - 8; // maximum bits storing source line number size_t rule_id : 8; // this must be large enough to fit largest rule number size_t arg_i; // this dictates the maximum nodes in a "list" of things } rule_stack_t; typedef struct _mp_parse_chunk_t { size_t alloc; union { size_t used; struct _mp_parse_chunk_t *next; } union_; byte data[]; } mp_parse_chunk_t; typedef enum { PARSE_ERROR_NONE = 0, PARSE_ERROR_MEMORY, PARSE_ERROR_CONST, } parse_error_t; typedef struct _parser_t { parse_error_t parse_error; size_t rule_stack_alloc; size_t rule_stack_top; rule_stack_t *rule_stack; size_t result_stack_alloc; size_t result_stack_top; mp_parse_node_t *result_stack; mp_lexer_t *lexer; mp_parse_tree_t tree; mp_parse_chunk_t *cur_chunk; #if MICROPY_COMP_CONST mp_map_t consts; #endif } parser_t; STATIC void *parser_alloc(parser_t *parser, size_t num_bytes) { // use a custom memory allocator to store parse nodes sequentially in large chunks mp_parse_chunk_t *chunk = parser->cur_chunk; if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) { // not enough room at end of previously allocated chunk so try to grow mp_parse_chunk_t *new_data = (mp_parse_chunk_t*)m_renew_maybe(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc, sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false); if (new_data == NULL) { // could not grow existing memory; shrink it to fit previous (void)m_renew(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc, sizeof(mp_parse_chunk_t) + chunk->union_.used); chunk->alloc = chunk->union_.used; chunk->union_.next = parser->tree.chunk; parser->tree.chunk = chunk; chunk = NULL; } else { // could grow existing memory chunk->alloc += num_bytes; } } if (chunk == NULL) { // no previous chunk, allocate a new chunk size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT; if (alloc < num_bytes) { alloc = num_bytes; } chunk = (mp_parse_chunk_t*)m_new(byte, sizeof(mp_parse_chunk_t) + alloc); chunk->alloc = alloc; chunk->union_.used = 0; parser->cur_chunk = chunk; } byte *ret = chunk->data + chunk->union_.used; chunk->union_.used += num_bytes; return ret; } STATIC void push_rule(parser_t *parser, size_t src_line, const rule_t *rule, size_t arg_i) { if (parser->parse_error) { return; } if (parser->rule_stack_top >= parser->rule_stack_alloc) { rule_stack_t *rs = m_renew_maybe(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC, true); if (rs == NULL) { parser->parse_error = PARSE_ERROR_MEMORY; return; } parser->rule_stack = rs; parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC; } rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++]; rs->src_line = src_line; rs->rule_id = rule->rule_id; rs->arg_i = arg_i; } STATIC void push_rule_from_arg(parser_t *parser, size_t arg) { assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE); size_t rule_id = arg & RULE_ARG_ARG_MASK; assert(rule_id < RULE_maximum_number_of); push_rule(parser, parser->lexer->tok_line, rules[rule_id], 0); } STATIC void pop_rule(parser_t *parser, const rule_t **rule, size_t *arg_i, size_t *src_line) { assert(!parser->parse_error); parser->rule_stack_top -= 1; *rule = rules[parser->rule_stack[parser->rule_stack_top].rule_id]; *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i; *src_line = parser->rule_stack[parser->rule_stack_top].src_line; } mp_parse_node_t mp_parse_node_new_leaf(size_t kind, mp_int_t arg) { if (kind == MP_PARSE_NODE_SMALL_INT) { return (mp_parse_node_t)(kind | (arg << 1)); } return (mp_parse_node_t)(kind | (arg << 4)); } int mp_parse_node_extract_list(mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) { if (MP_PARSE_NODE_IS_NULL(*pn)) { *nodes = NULL; return 0; } else if (MP_PARSE_NODE_IS_LEAF(*pn)) { *nodes = pn; return 1; } else { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)(*pn); if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) { *nodes = pn; return 1; } else { *nodes = pns->nodes; return MP_PARSE_NODE_STRUCT_NUM_NODES(pns); } } } #if MICROPY_DEBUG_PRINTERS void mp_parse_node_print(mp_parse_node_t pn, size_t indent) { if (MP_PARSE_NODE_IS_STRUCT(pn)) { printf("[% 4d] ", (int)((mp_parse_node_struct_t*)pn)->source_line); } else { printf(" "); } for (size_t i = 0; i < indent; i++) { printf(" "); } if (MP_PARSE_NODE_IS_NULL(pn)) { printf("NULL\n"); } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) { mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn); printf("int(" INT_FMT ")\n", arg); } else if (MP_PARSE_NODE_IS_LEAF(pn)) { uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn); switch (MP_PARSE_NODE_LEAF_KIND(pn)) { case MP_PARSE_NODE_ID: printf("id(%s)\n", qstr_str(arg)); break; case MP_PARSE_NODE_STRING: printf("str(%s)\n", qstr_str(arg)); break; case MP_PARSE_NODE_BYTES: printf("bytes(%s)\n", qstr_str(arg)); break; case MP_PARSE_NODE_TOKEN: printf("tok(%u)\n", (uint)arg); break; default: assert(0); } } else { // node must be a mp_parse_node_struct_t mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_string) { printf("literal str(%.*s)\n", (int)pns->nodes[1], (char*)pns->nodes[0]); } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_bytes) { printf("literal bytes(%.*s)\n", (int)pns->nodes[1], (char*)pns->nodes[0]); } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) { #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D printf("literal const(%016llx)\n", (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32)); #else printf("literal const(%p)\n", (mp_obj_t)pns->nodes[0]); #endif } else { size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns); #ifdef USE_RULE_NAME printf("%s(%u) (n=%u)\n", rules[MP_PARSE_NODE_STRUCT_KIND(pns)]->rule_name, (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n); #else printf("rule(%u) (n=%u)\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n); #endif for (size_t i = 0; i < n; i++) { mp_parse_node_print(pns->nodes[i], indent + 2); } } } } #endif // MICROPY_DEBUG_PRINTERS /* STATIC void result_stack_show(parser_t *parser) { printf("result stack, most recent first\n"); for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) { mp_parse_node_print(parser->result_stack[i], 0); } } */ STATIC mp_parse_node_t pop_result(parser_t *parser) { if (parser->parse_error) { return MP_PARSE_NODE_NULL; } assert(parser->result_stack_top > 0); return parser->result_stack[--parser->result_stack_top]; } STATIC mp_parse_node_t peek_result(parser_t *parser, size_t pos) { if (parser->parse_error) { return MP_PARSE_NODE_NULL; } assert(parser->result_stack_top > pos); return parser->result_stack[parser->result_stack_top - 1 - pos]; } STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) { if (parser->parse_error) { return; } if (parser->result_stack_top >= parser->result_stack_alloc) { mp_parse_node_t *stack = m_renew_maybe(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC, true); if (stack == NULL) { parser->parse_error = PARSE_ERROR_MEMORY; return; } parser->result_stack = stack; parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC; } parser->result_stack[parser->result_stack_top++] = pn; } STATIC mp_parse_node_t make_node_string_bytes(parser_t *parser, size_t src_line, size_t rule_kind, const char *str, size_t len) { mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * 2); if (pn == NULL) { parser->parse_error = PARSE_ERROR_MEMORY; return MP_PARSE_NODE_NULL; } pn->source_line = src_line; pn->kind_num_nodes = rule_kind | (2 << 8); char *p = m_new(char, len); memcpy(p, str, len); pn->nodes[0] = (uintptr_t)p; pn->nodes[1] = len; return (mp_parse_node_t)pn; } STATIC mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) { mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t)); if (pn == NULL) { parser->parse_error = PARSE_ERROR_MEMORY; return MP_PARSE_NODE_NULL; } pn->source_line = src_line; #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D // nodes are 32-bit pointers, but need to store 64-bit object pn->kind_num_nodes = RULE_const_object | (2 << 8); pn->nodes[0] = (uint64_t)obj; pn->nodes[1] = (uint64_t)obj >> 32; #else pn->kind_num_nodes = RULE_const_object | (1 << 8); pn->nodes[0] = (uintptr_t)obj; #endif return (mp_parse_node_t)pn; } STATIC void push_result_token(parser_t *parser) { mp_parse_node_t pn; mp_lexer_t *lex = parser->lexer; if (lex->tok_kind == MP_TOKEN_NAME) { qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len); #if MICROPY_COMP_CONST // lookup identifier in table of dynamic constants mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP); if (elem != NULL) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(elem->value)); } else #endif { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id); } } else if (lex->tok_kind == MP_TOKEN_INTEGER) { mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex); if (MP_OBJ_IS_SMALL_INT(o)) { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(o)); } else { pn = make_node_const_object(parser, lex->tok_line, o); } } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) { mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex); pn = make_node_const_object(parser, lex->tok_line, o); } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) { // Don't automatically intern all strings/bytes. doc strings (which are usually large) // will be discarded by the compiler, and so we shouldn't intern them. qstr qst = MP_QSTR_NULL; if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) { // intern short strings qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len); } else { // check if this string is already interned qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len); } if (qst != MP_QSTR_NULL) { // qstr exists, make a leaf node pn = mp_parse_node_new_leaf(lex->tok_kind == MP_TOKEN_STRING ? MP_PARSE_NODE_STRING : MP_PARSE_NODE_BYTES, qst); } else { // not interned, make a node holding a pointer to the string/bytes data pn = make_node_string_bytes(parser, lex->tok_line, lex->tok_kind == MP_TOKEN_STRING ? RULE_string : RULE_bytes, lex->vstr.buf, lex->vstr.len); } } else { pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind); } push_result_node(parser, pn); } #if MICROPY_COMP_MODULE_CONST STATIC const mp_rom_map_elem_t mp_constants_table[] = { #if MICROPY_PY_UCTYPES { MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) }, #endif // Extra constants as defined by a port MICROPY_PORT_CONSTANTS }; STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table); #endif #if MICROPY_COMP_CONST_FOLDING STATIC bool fold_constants(parser_t *parser, const rule_t *rule, size_t num_args) { // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4 // it does not do partial folding, eg 1 + 2 + x -> 3 + x mp_int_t arg0; if (rule->rule_id == RULE_expr || rule->rule_id == RULE_xor_expr || rule->rule_id == RULE_and_expr) { // folding for binary ops: | ^ & mp_parse_node_t pn = peek_result(parser, num_args - 1); if (!MP_PARSE_NODE_IS_SMALL_INT(pn)) { return false; } arg0 = MP_PARSE_NODE_LEAF_SMALL_INT(pn); for (ssize_t i = num_args - 2; i >= 0; --i) { pn = peek_result(parser, i); if (!MP_PARSE_NODE_IS_SMALL_INT(pn)) { return false; } mp_int_t arg1 = MP_PARSE_NODE_LEAF_SMALL_INT(pn); if (rule->rule_id == RULE_expr) { // int | int arg0 |= arg1; } else if (rule->rule_id == RULE_xor_expr) { // int ^ int arg0 ^= arg1; } else if (rule->rule_id == RULE_and_expr) { // int & int arg0 &= arg1; } } } else if (rule->rule_id == RULE_shift_expr || rule->rule_id == RULE_arith_expr || rule->rule_id == RULE_term) { // folding for binary ops: << >> + - * / % // mp_parse_node_t pn = peek_result(parser, num_args - 1); if (!MP_PARSE_NODE_IS_SMALL_INT(pn)) { return false; } arg0 = MP_PARSE_NODE_LEAF_SMALL_INT(pn); for (ssize_t i = num_args - 2; i >= 1; i -= 2) { pn = peek_result(parser, i - 1); if (!MP_PARSE_NODE_IS_SMALL_INT(pn)) { return false; } mp_int_t arg1 = MP_PARSE_NODE_LEAF_SMALL_INT(pn); mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i)); if (tok == MP_TOKEN_OP_DBL_LESS) { // int << int if (arg1 >= (mp_int_t)BITS_PER_WORD || arg0 > (MP_SMALL_INT_MAX >> arg1) || arg0 < (MP_SMALL_INT_MIN >> arg1)) { return false; } arg0 <<= arg1; } else if (tok == MP_TOKEN_OP_DBL_MORE) { // int >> int if (arg1 >= (mp_int_t)BITS_PER_WORD) { // Shifting to big amounts is underfined behavior // in C and is CPU-dependent; propagate sign bit. arg1 = BITS_PER_WORD - 1; } arg0 >>= arg1; } else if (tok == MP_TOKEN_OP_PLUS) { // int + int arg0 += arg1; } else if (tok == MP_TOKEN_OP_MINUS) { // int - int arg0 -= arg1; } else if (tok == MP_TOKEN_OP_STAR) { // int * int if (mp_small_int_mul_overflow(arg0, arg1)) { return false; } arg0 *= arg1; } else if (tok == MP_TOKEN_OP_SLASH) { // int / int return false; } else if (tok == MP_TOKEN_OP_PERCENT) { // int % int if (arg1 == 0) { return false; } arg0 = mp_small_int_modulo(arg0, arg1); } else { assert(tok == MP_TOKEN_OP_DBL_SLASH); // should be // int // int if (arg1 == 0) { return false; } arg0 = mp_small_int_floor_divide(arg0, arg1); } if (!MP_SMALL_INT_FITS(arg0)) { return false; } } } else if (rule->rule_id == RULE_factor_2) { // folding for unary ops: + - ~ mp_parse_node_t pn = peek_result(parser, 0); if (!MP_PARSE_NODE_IS_SMALL_INT(pn)) { return false; } arg0 = MP_PARSE_NODE_LEAF_SMALL_INT(pn); mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1)); if (tok == MP_TOKEN_OP_PLUS) { // +int } else if (tok == MP_TOKEN_OP_MINUS) { // -int arg0 = -arg0; if (!MP_SMALL_INT_FITS(arg0)) { return false; } } else { assert(tok == MP_TOKEN_OP_TILDE); // should be // ~int arg0 = ~arg0; } #if MICROPY_COMP_CONST } else if (rule->rule_id == RULE_expr_stmt) { mp_parse_node_t pn1 = peek_result(parser, 0); if (!MP_PARSE_NODE_IS_NULL(pn1) && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign) || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) { // this node is of the form = mp_parse_node_t pn0 = peek_result(parser, 1); if (MP_PARSE_NODE_IS_ID(pn0) && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_power) && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pn1)->nodes[0]) && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn1)->nodes[0]) == MP_QSTR_const && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pn1)->nodes[1], RULE_trailer_paren) && MP_PARSE_NODE_IS_NULL(((mp_parse_node_struct_t*)pn1)->nodes[2]) ) { // code to assign dynamic constants: id = const(value) // get the id qstr id = MP_PARSE_NODE_LEAF_ARG(pn0); // get the value mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pn1)->nodes[1])->nodes[0]; if (!MP_PARSE_NODE_IS_SMALL_INT(pn_value)) { parser->parse_error = PARSE_ERROR_CONST; return false; } mp_int_t value = MP_PARSE_NODE_LEAF_SMALL_INT(pn_value); // store the value in the table of dynamic constants mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); assert(elem->value == MP_OBJ_NULL); elem->value = MP_OBJ_NEW_SMALL_INT(value); // replace const(value) with value pop_result(parser); push_result_node(parser, pn_value); // finished folding this assignment, but we still want it to be part of the tree return false; } } return false; #endif #if MICROPY_COMP_MODULE_CONST } else if (rule->rule_id == RULE_power) { mp_parse_node_t pn0 = peek_result(parser, 2); mp_parse_node_t pn1 = peek_result(parser, 1); mp_parse_node_t pn2 = peek_result(parser, 0); if (!(MP_PARSE_NODE_IS_ID(pn0) && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period) && MP_PARSE_NODE_IS_NULL(pn2))) { return false; } // id1.id2 // look it up in constant table, see if it can be replaced with an integer mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pn1; assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0); qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]); mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP); if (elem == NULL) { return false; } mp_obj_t dest[2]; mp_load_method_maybe(elem->value, q_attr, dest); if (!(MP_OBJ_IS_SMALL_INT(dest[0]) && dest[1] == MP_OBJ_NULL)) { return false; } arg0 = MP_OBJ_SMALL_INT_VALUE(dest[0]); #endif } else { return false; } // success folding this rule for (size_t i = num_args; i > 0; i--) { pop_result(parser); } push_result_node(parser, mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, arg0)); return true; } #endif STATIC void push_result_rule(parser_t *parser, size_t src_line, const rule_t *rule, size_t num_args) { #if MICROPY_COMP_CONST_FOLDING if (fold_constants(parser, rule, num_args)) { // we folded this rule so return straight away return; } #endif mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args); if (pn == NULL) { parser->parse_error = PARSE_ERROR_MEMORY; return; } pn->source_line = src_line; pn->kind_num_nodes = (rule->rule_id & 0xff) | (num_args << 8); for (size_t i = num_args; i > 0; i--) { pn->nodes[i - 1] = pop_result(parser); } push_result_node(parser, (mp_parse_node_t)pn); } mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) { // initialise parser and allocate memory for its stacks parser_t parser; parser.parse_error = PARSE_ERROR_NONE; parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT; parser.rule_stack_top = 0; parser.rule_stack = m_new_maybe(rule_stack_t, parser.rule_stack_alloc); parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT; parser.result_stack_top = 0; parser.result_stack = m_new_maybe(mp_parse_node_t, parser.result_stack_alloc); parser.lexer = lex; parser.tree.chunk = NULL; parser.cur_chunk = NULL; #if MICROPY_COMP_CONST mp_map_init(&parser.consts, 0); #endif // check if we could allocate the stacks if (parser.rule_stack == NULL || parser.result_stack == NULL) { goto memory_error; } // work out the top-level rule to use, and push it on the stack size_t top_level_rule; switch (input_kind) { case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break; case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break; default: top_level_rule = RULE_file_input; } push_rule(&parser, lex->tok_line, rules[top_level_rule], 0); // parse! size_t n, i; // state for the current rule size_t rule_src_line; // source line for the first token matched by the current rule bool backtrack = false; const rule_t *rule = NULL; for (;;) { next_rule: if (parser.rule_stack_top == 0 || parser.parse_error) { break; } pop_rule(&parser, &rule, &i, &rule_src_line); n = rule->act & RULE_ACT_ARG_MASK; /* // debugging printf("depth=%d ", parser.rule_stack_top); for (int j = 0; j < parser.rule_stack_top; ++j) { printf(" "); } printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack); */ switch (rule->act & RULE_ACT_KIND_MASK) { case RULE_ACT_OR: if (i > 0 && !backtrack) { goto next_rule; } else { backtrack = false; } for (; i < n; ++i) { uint16_t kind = rule->arg[i] & RULE_ARG_KIND_MASK; if (kind == RULE_ARG_TOK) { if (lex->tok_kind == (rule->arg[i] & RULE_ARG_ARG_MASK)) { push_result_token(&parser); mp_lexer_to_next(lex); goto next_rule; } } else { assert(kind == RULE_ARG_RULE); if (i + 1 < n) { push_rule(&parser, rule_src_line, rule, i + 1); // save this or-rule } push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule goto next_rule; } } backtrack = true; break; case RULE_ACT_AND: { // failed, backtrack if we can, else syntax error if (backtrack) { assert(i > 0); if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { // an optional rule that failed, so continue with next arg push_result_node(&parser, MP_PARSE_NODE_NULL); backtrack = false; } else { // a mandatory rule that failed, so propagate backtrack if (i > 1) { // already eaten tokens so can't backtrack goto syntax_error; } else { goto next_rule; } } } // progress through the rule for (; i < n; ++i) { switch (rule->arg[i] & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: { // need to match a token mp_token_kind_t tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK; if (lex->tok_kind == tok_kind) { // matched token if (tok_kind == MP_TOKEN_NAME) { push_result_token(&parser); } mp_lexer_to_next(lex); } else { // failed to match token if (i > 0) { // already eaten tokens so can't backtrack goto syntax_error; } else { // this rule failed, so backtrack backtrack = true; goto next_rule; } } break; } case RULE_ARG_RULE: case RULE_ARG_OPT_RULE: rule_and_no_other_choice: push_rule(&parser, rule_src_line, rule, i + 1); // save this and-rule push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule goto next_rule; default: assert(0); goto rule_and_no_other_choice; // to help flow control analysis } } assert(i == n); // matched the rule, so now build the corresponding parse_node // count number of arguments for the parse_node i = 0; bool emit_rule = false; for (size_t x = 0; x < n; ++x) { if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK; if (tok_kind >= MP_TOKEN_NAME) { emit_rule = true; } if (tok_kind == MP_TOKEN_NAME) { // only tokens which were names are pushed to stack i += 1; } } else { // rules are always pushed i += 1; } } #if !MICROPY_ENABLE_DOC_STRING // this code discards lonely statements, such as doc strings if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) { mp_parse_node_t p = peek_result(&parser, 1); if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_string)) { pop_result(&parser); // MP_PARSE_NODE_NULL mp_parse_node_t pn = pop_result(&parser); // possibly RULE_string if (MP_PARSE_NODE_IS_STRUCT(pn)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_string) { m_del(char, (char*)pns->nodes[0], (size_t)pns->nodes[1]); } } push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0); break; } } #endif // always emit these rules, even if they have only 1 argument if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) { emit_rule = true; } // if a rule has the RULE_ACT_ALLOW_IDENT bit set then this // rule should not be emitted if it has only 1 argument // NOTE: can't set this flag for atom_paren because we need it // to distinguish, for example, [a,b] from [(a,b)] if (rule->act & RULE_ACT_ALLOW_IDENT) { emit_rule = false; } // always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data) if (ADD_BLANK_NODE(rule)) { emit_rule = true; push_result_node(&parser, MP_PARSE_NODE_NULL); i += 1; } size_t num_not_nil = 0; for (size_t x = 0; x < i; ++x) { if (peek_result(&parser, x) != MP_PARSE_NODE_NULL) { num_not_nil += 1; } } if (emit_rule || num_not_nil != 1) { // need to add rule when num_not_nil==0 for, eg, atom_paren, testlist_comp_3b push_result_rule(&parser, rule_src_line, rule, i); } else { // single result, leave it on stack mp_parse_node_t pn = MP_PARSE_NODE_NULL; for (size_t x = 0; x < i; ++x) { mp_parse_node_t pn2 = pop_result(&parser); if (pn2 != MP_PARSE_NODE_NULL) { pn = pn2; } } push_result_node(&parser, pn); } break; } case RULE_ACT_LIST: { // n=2 is: item item* // n=1 is: item (sep item)* // n=3 is: item (sep item)* [sep] bool had_trailing_sep; if (backtrack) { list_backtrack: had_trailing_sep = false; if (n == 2) { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else { // fail on item, in later rounds; finish with this rule backtrack = false; } } else { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else if ((i & 1) == 1) { // fail on item, in later rounds; have eaten tokens so can't backtrack if (n == 3) { // list allows trailing separator; finish parsing list had_trailing_sep = true; backtrack = false; } else { // list doesn't allowing trailing separator; fail goto syntax_error; } } else { // fail on separator; finish parsing list backtrack = false; } } } else { for (;;) { size_t arg = rule->arg[i & 1 & n]; switch (arg & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) { if (i & 1 & n) { // separators which are tokens are not pushed to result stack } else { push_result_token(&parser); } mp_lexer_to_next(lex); // got element of list, so continue parsing list i += 1; } else { // couldn't get element of list i += 1; backtrack = true; goto list_backtrack; } break; case RULE_ARG_RULE: rule_list_no_other_choice: push_rule(&parser, rule_src_line, rule, i + 1); // save this list-rule push_rule_from_arg(&parser, arg); // push child of list-rule goto next_rule; default: assert(0); goto rule_list_no_other_choice; // to help flow control analysis } } } assert(i >= 1); // compute number of elements in list, result in i i -= 1; if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { // don't count separators when they are tokens i = (i + 1) / 2; } if (i == 1) { // list matched single item if (had_trailing_sep) { // if there was a trailing separator, make a list of a single item push_result_rule(&parser, rule_src_line, rule, i); } else { // just leave single item on stack (ie don't wrap in a list) } } else { push_result_rule(&parser, rule_src_line, rule, i); } break; } default: assert(0); } } #if MICROPY_COMP_CONST mp_map_deinit(&parser.consts); #endif // truncate final chunk and link into chain of chunks if (parser.cur_chunk != NULL) { (void)m_renew(byte, parser.cur_chunk, sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc, sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used); parser.cur_chunk->alloc = parser.cur_chunk->union_.used; parser.cur_chunk->union_.next = parser.tree.chunk; parser.tree.chunk = parser.cur_chunk; } mp_obj_t exc; if (parser.parse_error) { #if MICROPY_COMP_CONST if (parser.parse_error == PARSE_ERROR_CONST) { exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, "constant must be an integer"); } else #endif { assert(parser.parse_error == PARSE_ERROR_MEMORY); memory_error: exc = mp_obj_new_exception_msg(&mp_type_MemoryError, "parser could not allocate enough memory"); } parser.tree.root = MP_PARSE_NODE_NULL; } else if ( lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream || parser.result_stack_top == 0 // check that we got a node (can fail on empty input) ) { syntax_error: if (lex->tok_kind == MP_TOKEN_INDENT) { exc = mp_obj_new_exception_msg(&mp_type_IndentationError, "unexpected indent"); } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) { exc = mp_obj_new_exception_msg(&mp_type_IndentationError, "unindent does not match any outer indentation level"); } else { exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, "invalid syntax"); } parser.tree.root = MP_PARSE_NODE_NULL; } else { // no errors //result_stack_show(parser); //printf("rule stack alloc: %d\n", parser.rule_stack_alloc); //printf("result stack alloc: %d\n", parser.result_stack_alloc); //printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated); // get the root parse node that we created assert(parser.result_stack_top == 1); exc = MP_OBJ_NULL; parser.tree.root = parser.result_stack[0]; } // free the memory that we don't need anymore m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc); m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc); // we also free the lexer on behalf of the caller (see below) if (exc != MP_OBJ_NULL) { // had an error so raise the exception // add traceback to give info about file name and location // we don't have a 'block' name, so just pass the NULL qstr to indicate this mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL); mp_lexer_free(lex); nlr_raise(exc); } else { mp_lexer_free(lex); return parser.tree; } } void mp_parse_tree_clear(mp_parse_tree_t *tree) { mp_parse_chunk_t *chunk = tree->chunk; while (chunk != NULL) { mp_parse_chunk_t *next = chunk->union_.next; m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc); chunk = next; } }