/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020 Jeff Epler for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "py/mperrno.h" #include "common-hal/canio/CAN.h" #include "peripherals/periph.h" #include "shared-bindings/microcontroller/Pin.h" #include "shared-bindings/util.h" #include "supervisor/port.h" STATIC bool reserved_can[MP_ARRAY_SIZE(mcu_can_banks)]; STATIC const mcu_periph_obj_t *find_pin_function(const mcu_periph_obj_t *table, size_t sz, const mcu_pin_obj_t *pin, int periph_index) { for(size_t i = 0; iperiph_index) { continue; } if (pin == table->pin) { return table; } } return NULL; } __attribute__((optimize("O0"))) void common_hal_canio_can_construct(canio_can_obj_t *self, mcu_pin_obj_t *tx, mcu_pin_obj_t *rx, int baudrate, bool loopback, bool silent) { #define DIV_ROUND(a, b) (((a) + (b)/2) / (b)) #define DIV_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) const uint8_t can_tx_len = MP_ARRAY_SIZE(mcu_can_tx_list); const uint8_t can_rx_len = MP_ARRAY_SIZE(mcu_can_rx_list); const mcu_periph_obj_t *mcu_tx = find_pin_function(mcu_can_tx_list, can_tx_len, tx, -1); if (!mcu_tx) { mp_raise_ValueError_varg(translate("Invalid %q pin selection"), MP_QSTR_tx); } int periph_index = mcu_tx->periph_index; const mcu_periph_obj_t *mcu_rx = find_pin_function(mcu_can_rx_list, can_rx_len, rx, periph_index); if (!mcu_rx) { mp_raise_ValueError_varg(translate("Invalid %q pin selection"), MP_QSTR_rx); } if (reserved_can[periph_index]) { mp_raise_ValueError(translate("Hardware busy, try alternative pins")); } const uint32_t can_frequency = 42000000; uint32_t clocks_per_bit = DIV_ROUND(can_frequency, baudrate); uint32_t clocks_to_sample = DIV_ROUND(clocks_per_bit * 7, 8); uint32_t clocks_after_sample = clocks_per_bit - clocks_to_sample; uint32_t divisor = MAX(DIV_ROUND_UP(clocks_to_sample, 16), DIV_ROUND_UP(clocks_after_sample, 8)); const uint32_t sjw = 3; uint32_t tq_per_bit = DIV_ROUND(clocks_per_bit, divisor); uint32_t tq_to_sample = DIV_ROUND(clocks_to_sample, divisor); uint32_t tq_after_sample = tq_per_bit - tq_to_sample; if (divisor > 1023) { mp_raise_OSError(MP_EINVAL); // baudrate cannot be attained (16kHz or something is lower bound, should never happen) } { GPIO_InitTypeDef GPIO_InitStruct = { .Pin = pin_mask(tx->number), .Speed = GPIO_SPEED_FREQ_VERY_HIGH, .Mode = GPIO_MODE_AF_PP, .Pull = GPIO_PULLUP, .Alternate = mcu_tx->altfn_index, }; HAL_GPIO_Init(pin_port(tx->port), &GPIO_InitStruct); GPIO_InitStruct.Pin = pin_mask(rx->number); GPIO_InitStruct.Alternate = mcu_rx->altfn_index; HAL_GPIO_Init(pin_port(rx->port), &GPIO_InitStruct); } CAN_TypeDef *hw = mcu_can_banks[periph_index - 1]; // CAN2 shares resources with CAN1. So we always enable CAN1, then split // the filter banks equally between them. __HAL_RCC_CAN1_CLK_ENABLE(); if(hw == CAN2) { __HAL_RCC_CAN2_CLK_ENABLE(); self->start_filter_bank = 14; self->end_filter_bank = 28; self->filter_hw = CAN1; } else { self->start_filter_bank = 0; self->end_filter_bank = 14; self->filter_hw = hw; } CAN_InitTypeDef init = { .AutoRetransmission = ENABLE, .AutoBusOff = ENABLE, .Prescaler = divisor, .Mode = (loopback ? CAN_MODE_LOOPBACK : 0) | (silent ? CAN_MODE_SILENT_LOOPBACK : 0), .SyncJumpWidth = (sjw-1) << CAN_BTR_SJW_Pos, .TimeSeg1 = (tq_to_sample-2) << CAN_BTR_TS1_Pos, .TimeSeg2 = (tq_after_sample-1) << CAN_BTR_TS2_Pos, }; self->periph_index = periph_index; self->silent = silent; self->loopback = loopback; self->baudrate = baudrate; self->handle.Instance = hw; self->handle.Init = init; self->handle.State = HAL_CAN_STATE_RESET; HAL_CAN_Init(&self->handle); // Set the filter split as 14:14 // COULDDO(@jepler): Dynamically allocate filter banks between CAN1/2 self->filter_hw->FMR |= CAN_FMR_FINIT; self->filter_hw->FMR = CAN_FMR_FINIT | (14 << CAN_FMR_CAN2SB_Pos); // Clear every filter enable bit for this can HW uint32_t fa1r = self->filter_hw->FA1R; for (int i = self->start_filter_bank; iend_filter_bank; i++) { fa1r &= ~(1 << i); } self->filter_hw->FA1R = fa1r; CLEAR_BIT(self->filter_hw->FMR, CAN_FMR_FINIT); HAL_CAN_Start(&self->handle); reserved_can[periph_index] = true; } bool common_hal_canio_can_loopback_get(canio_can_obj_t *self) { return self->loopback; } int common_hal_canio_can_baudrate_get(canio_can_obj_t *self) { return self->baudrate; } int common_hal_canio_can_transmit_error_count_get(canio_can_obj_t *self) { return (self->handle.Instance->ESR & CAN_ESR_TEC) >> CAN_ESR_TEC_Pos; } int common_hal_canio_can_receive_error_count_get(canio_can_obj_t *self) { return (self->handle.Instance->ESR & CAN_ESR_REC) >> CAN_ESR_REC_Pos; } canio_bus_state_t common_hal_canio_can_state_get(canio_can_obj_t *self) { uint32_t esr = self->handle.Instance->ESR; if (READ_BIT(esr, CAN_ESR_BOFF)) { return BUS_STATE_OFF; } if (READ_BIT(esr, CAN_ESR_EPVF)) { return BUS_STATE_ERROR_PASSIVE; } if (READ_BIT(esr, CAN_ESR_EWGF)) { return BUS_STATE_ERROR_WARNING; } return BUS_STATE_ERROR_ACTIVE; } void common_hal_canio_can_restart(canio_can_obj_t *self) { if (!common_hal_canio_can_auto_restart_get(self)) { HAL_CAN_Start(&self->handle); } } bool common_hal_canio_can_auto_restart_get(canio_can_obj_t *self) { return READ_BIT(self->handle.Instance->MCR, CAN_MCR_ABOM); } void common_hal_canio_can_auto_restart_set(canio_can_obj_t *self, bool value) { if(value) { SET_BIT(self->handle.Instance->MCR, CAN_MCR_ABOM); } else { CLEAR_BIT(self->handle.Instance->MCR, CAN_MCR_ABOM); } } void common_hal_canio_can_send(canio_can_obj_t *self, mp_obj_t message_in) { canio_message_obj_t *message = message_in; uint32_t mailbox; bool rtr = message->base.type == &canio_remote_transmission_request_type; CAN_TxHeaderTypeDef header = { .StdId = message->id, .ExtId = message->id, .IDE = message->extended ? CAN_ID_EXT : CAN_ID_STD, .RTR = rtr ? CAN_RTR_REMOTE : CAN_RTR_DATA, .DLC = message->size, }; HAL_StatusTypeDef status = HAL_CAN_AddTxMessage(&self->handle, &header, message->data, &mailbox); if (status != HAL_OK) { mp_raise_OSError(MP_ENOMEM); } } bool common_hal_canio_can_silent_get(canio_can_obj_t *self) { return self->silent; } bool common_hal_canio_can_deinited(canio_can_obj_t *self) { return !self->handle.Instance; } void common_hal_canio_can_check_for_deinit(canio_can_obj_t *self) { if (common_hal_canio_can_deinited(self)) { raise_deinited_error(); } } void common_hal_canio_can_deinit(canio_can_obj_t *self) { if (self->handle.Instance) { SET_BIT(self->handle.Instance->MCR, CAN_MCR_RESET); while (READ_BIT(self->handle.Instance->MCR, CAN_MCR_RESET)) { } reserved_can[self->periph_index] = 0; } self->handle.Instance = NULL; } void common_hal_canio_reset(void) { for (size_t i=0; iMCR, CAN_MCR_RESET); reserved_can[i] = 0; } }