/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Scott Shawcroft * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/busio/I2C.h" #include "py/mperrno.h" #include "py/runtime.h" #include "hal/include/hal_gpio.h" #include "hal/include/hal_i2c_m_sync.h" #include "hal/include/hpl_i2c_m_sync.h" #include "peripherals.h" #include "pins.h" // Number of times to try to send packet if failed. #define ATTEMPTS 2 void common_hal_busio_i2c_construct(busio_i2c_obj_t *self, const mcu_pin_obj_t* scl, const mcu_pin_obj_t* sda, uint32_t frequency) { Sercom* sercom = NULL; uint8_t sercom_index; uint32_t sda_pinmux = 0; uint32_t scl_pinmux = 0; for (int i = 0; i < NUM_SERCOMS_PER_PIN; i++) { Sercom* potential_sercom = sda->sercom[i].sercom; if (potential_sercom == NULL || potential_sercom->I2CM.CTRLA.bit.ENABLE != 0 || sda->sercom[i].pad != 0) { continue; } sda_pinmux = PINMUX(sda->pin, (i == 0) ? MUX_C : MUX_D); for (int j = 0; j < NUM_SERCOMS_PER_PIN; j++) { if (potential_sercom == scl->sercom[j].sercom && scl->sercom[j].pad == 1) { scl_pinmux = PINMUX(scl->pin, (j == 0) ? MUX_C : MUX_D); sercom = potential_sercom; sercom_index = scl->sercom[j].index; // 2 for SERCOM2, etc. break; } } if (sercom != NULL) { break; } } if (sercom == NULL) { mp_raise_ValueError("Invalid pins"); } // Set up I2C clocks on sercom. samd_peripherals_sercom_clock_init(sercom, sercom_index); if (i2c_m_sync_init(&self->i2c_desc, sercom) != ERR_NONE) { mp_raise_OSError(MP_EIO); } gpio_set_pin_pull_mode(sda->pin, GPIO_PULL_OFF); gpio_set_pin_function(sda->pin, sda_pinmux); gpio_set_pin_pull_mode(scl->pin, GPIO_PULL_OFF); gpio_set_pin_function(scl->pin, scl_pinmux); // clkrate is always 0. baud_rate is in kHz. // Frequency must be set before the I2C device is enabled. if (i2c_m_sync_set_baudrate(&self->i2c_desc, 0, frequency / 1000) != ERR_NONE) { mp_raise_ValueError("Unsupported baudrate"); } self->sda_pin = sda->pin; self->scl_pin = scl->pin; claim_pin(sda); claim_pin(scl); if (i2c_m_sync_enable(&self->i2c_desc) != ERR_NONE) { common_hal_busio_i2c_deinit(self); mp_raise_OSError(MP_EIO); } } bool common_hal_busio_i2c_deinited(busio_i2c_obj_t *self) { return self->sda_pin == NO_PIN; } void common_hal_busio_i2c_deinit(busio_i2c_obj_t *self) { if (common_hal_busio_i2c_deinited(self)) { return; } i2c_m_sync_disable(&self->i2c_desc); i2c_m_sync_deinit(&self->i2c_desc); reset_pin(self->sda_pin); reset_pin(self->scl_pin); self->sda_pin = NO_PIN; self->scl_pin = NO_PIN; } bool common_hal_busio_i2c_probe(busio_i2c_obj_t *self, uint8_t addr) { struct io_descriptor *i2c_io; i2c_m_sync_get_io_descriptor(&self->i2c_desc, &i2c_io); i2c_m_sync_set_slaveaddr(&self->i2c_desc, addr, I2C_M_SEVEN); // Write no data when just probing return io_write(i2c_io, NULL, 0) == ERR_NONE; } bool common_hal_busio_i2c_try_lock(busio_i2c_obj_t *self) { bool grabbed_lock = false; CRITICAL_SECTION_ENTER() if (!self->has_lock) { grabbed_lock = true; self->has_lock = true; } CRITICAL_SECTION_LEAVE(); return grabbed_lock; } bool common_hal_busio_i2c_has_lock(busio_i2c_obj_t *self) { return self->has_lock; } void common_hal_busio_i2c_unlock(busio_i2c_obj_t *self) { self->has_lock = false; } uint8_t common_hal_busio_i2c_write(busio_i2c_obj_t *self, uint16_t addr, const uint8_t *data, size_t len, bool transmit_stop_bit) { uint16_t attempts = ATTEMPTS; int32_t status; do { struct _i2c_m_msg msg; msg.addr = addr; msg.len = len; msg.flags = transmit_stop_bit ? I2C_M_STOP : 0; msg.buffer = (uint8_t *) data; status = _i2c_m_sync_transfer(&self->i2c_desc.device, &msg); // Give up after ATTEMPTS tries. if (--attempts == 0) { break; } } while (status != I2C_OK); if (status == I2C_OK) { return 0; } else if (status == I2C_ERR_BAD_ADDRESS) { return MP_ENODEV; } return MP_EIO; } uint8_t common_hal_busio_i2c_read(busio_i2c_obj_t *self, uint16_t addr, uint8_t *data, size_t len) { uint16_t attempts = ATTEMPTS; int32_t status; do { struct _i2c_m_msg msg; msg.addr = addr; msg.len = len; msg.flags = I2C_M_STOP | I2C_M_RD; msg.buffer = data; status = _i2c_m_sync_transfer(&self->i2c_desc.device, &msg); // Give up after ATTEMPTS tries. if (--attempts == 0) { break; } } while (status != I2C_OK); if (status == ERR_NONE) { return 0; } else if (status == I2C_ERR_BAD_ADDRESS) { return MP_ENODEV; } return MP_EIO; }