/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Scott Shawcroft * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "shared-bindings/busio/SPI.h" #include "py/mperrno.h" #include "py/runtime.h" #include "stm32f4xx_hal.h" #include "shared-bindings/microcontroller/__init__.h" #include "boards/board.h" #include "supervisor/shared/translate.h" #include "common-hal/microcontroller/Pin.h" STATIC bool reserved_spi[6]; void spi_reset(void) { #ifdef SPI1 reserved_spi[0] = false; __HAL_RCC_SPI1_CLK_DISABLE(); #endif #ifdef SPI2 reserved_spi[1] = false; __HAL_RCC_SPI2_CLK_DISABLE(); #endif #ifdef SPI3 reserved_spi[2] = false; __HAL_RCC_SPI3_CLK_DISABLE(); #endif #ifdef SPI4 reserved_spi[3] = false; __HAL_RCC_SPI4_CLK_DISABLE(); #endif #ifdef SPI5 reserved_spi[4] = false; __HAL_RCC_SPI5_CLK_DISABLE(); #endif #ifdef SPI6 reserved_spi[5] = false; __HAL_RCC_SPI6_CLK_DISABLE(); #endif } void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t * sck, const mcu_pin_obj_t * mosi, const mcu_pin_obj_t * miso) { //match pins to SPI objects SPI_TypeDef * SPIx; uint8_t sck_len = sizeof(mcu_spi_sck_list)/sizeof(*mcu_spi_sck_list); uint8_t mosi_len = sizeof(mcu_spi_mosi_list)/sizeof(*mcu_spi_mosi_list); uint8_t miso_len = sizeof(mcu_spi_miso_list)/sizeof(*mcu_spi_miso_list); //sck for(uint i=0; isck = &mcu_spi_sck_list[j]; self->mosi = &mcu_spi_mosi_list[j]; self->miso = &mcu_spi_miso_list[k]; break; } } } } } } //handle typedef selection, errors if(self->sck!=NULL && self->mosi!=NULL && self->miso!=NULL ) { SPIx = mcu_spi_banks[self->sck->spi_index-1]; } else { mp_raise_RuntimeError(translate("Invalid SPI pin selection")); } if(reserved_spi[self->sck->spi_index-1]) { mp_raise_RuntimeError(translate("Hardware busy, try alternative pins")); } //Start GPIO for each pin GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = pin_mask(sck->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = self->sck->altfn_index; HAL_GPIO_Init(pin_port(sck->port), &GPIO_InitStruct); GPIO_InitStruct.Pin = pin_mask(mosi->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = self->mosi->altfn_index; HAL_GPIO_Init(pin_port(mosi->port), &GPIO_InitStruct); GPIO_InitStruct.Pin = pin_mask(miso->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = self->miso->altfn_index; HAL_GPIO_Init(pin_port(miso->port), &GPIO_InitStruct); #ifdef SPI1 if(SPIx==SPI1) { reserved_spi[0] = true; __HAL_RCC_SPI1_CLK_ENABLE(); } #endif #ifdef SPI2 if(SPIx==SPI2) { reserved_spi[1] = true; __HAL_RCC_SPI2_CLK_ENABLE(); } #endif #ifdef SPI3 if(SPIx==SPI3) { reserved_spi[2] = true; __HAL_RCC_SPI3_CLK_ENABLE(); } #endif #ifdef SPI4 if(SPIx==SPI4) { reserved_spi[3] = true; __HAL_RCC_SPI4_CLK_ENABLE(); } #endif #ifdef SPI5 if(SPIx==SPI5) { reserved_spi[4] = true; __HAL_RCC_SPI5_CLK_ENABLE(); } #endif #ifdef SPI6 if(SPIx==SPI6) { reserved_spi[5] = true; __HAL_RCC_SPI6_CLK_ENABLE(); } #endif self->handle.Instance = SPIx; self->handle.Init.Mode = SPI_MODE_MASTER; self->handle.Init.Direction = SPI_DIRECTION_2LINES; self->handle.Init.DataSize = SPI_DATASIZE_8BIT; self->handle.Init.CLKPolarity = SPI_POLARITY_LOW; self->handle.Init.CLKPhase = SPI_PHASE_1EDGE; self->handle.Init.NSS = SPI_NSS_SOFT; self->handle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; self->handle.Init.FirstBit = SPI_FIRSTBIT_MSB; self->handle.Init.TIMode = SPI_TIMODE_DISABLE; self->handle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; self->handle.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&self->handle) != HAL_OK) { mp_raise_RuntimeError(translate("SPI Init Error")); } self->baudrate = (HAL_RCC_GetPCLK2Freq()/16); self->prescaler = 16; self->polarity = 0; self->phase = 1; self->bits = 8; claim_pin(sck); claim_pin(mosi); claim_pin(miso); } void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) { } bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) { return self->sck->pin == mp_const_none; } void common_hal_busio_spi_deinit(busio_spi_obj_t *self) { #ifdef SPI1 if(self->handle.Instance==SPI1) { reserved_spi[0] = false; __HAL_RCC_SPI1_CLK_DISABLE(); } #endif #ifdef SPI2 if(self->handle.Instance==SPI2) { reserved_spi[1] = false; __HAL_RCC_SPI2_CLK_DISABLE(); } #endif #ifdef SPI3 if(self->handle.Instance==SPI3) { reserved_spi[2] = false; __HAL_RCC_SPI3_CLK_DISABLE(); } #endif #ifdef SPI4 if(self->handle.Instance==SPI4) { reserved_spi[3] = false; __HAL_RCC_SPI4_CLK_DISABLE(); } #endif #ifdef SPI5 if(self->handle.Instance==SPI5) { reserved_spi[4] = false; __HAL_RCC_SPI5_CLK_DISABLE(); } #endif #ifdef SPI6 if(self->handle.Instance==SPI6) { reserved_spi[5] = false; __HAL_RCC_SPI6_CLK_DISABLE(); } #endif reset_pin_number(self->sck->pin->port,self->sck->pin->number); reset_pin_number(self->mosi->pin->port,self->mosi->pin->number); reset_pin_number(self->miso->pin->port,self->miso->pin->number); self->sck = mp_const_none; self->mosi = mp_const_none; self->miso = mp_const_none; } static uint32_t stm32_baud_to_spi_div(uint32_t baudrate, uint16_t * prescaler) { static const uint32_t baud_map[8][2] = { {2,SPI_BAUDRATEPRESCALER_2}, {4,SPI_BAUDRATEPRESCALER_4}, {8,SPI_BAUDRATEPRESCALER_8}, {16,SPI_BAUDRATEPRESCALER_16}, {32,SPI_BAUDRATEPRESCALER_32}, {64,SPI_BAUDRATEPRESCALER_64}, {128,SPI_BAUDRATEPRESCALER_128}, {256,SPI_BAUDRATEPRESCALER_256} }; size_t i = 0; uint16_t divisor; do { divisor = baud_map[i][0]; if (baudrate >= (HAL_RCC_GetPCLK2Freq()/divisor)) { *prescaler = divisor; return baud_map[i][1]; } i++; } while (divisor != 256); //only gets here if requested baud is lower than minimum *prescaler = 256; return SPI_BAUDRATEPRESCALER_256; } bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) { //This resets the SPI, so check before updating it redundantly if (baudrate == self->baudrate && polarity== self->polarity && phase == self->phase && bits == self->bits) return true; //Deinit SPI HAL_SPI_DeInit(&self->handle); if (bits == 8) { self->handle.Init.DataSize = SPI_DATASIZE_8BIT; } else if (bits == 16) { self->handle.Init.DataSize = SPI_DATASIZE_16BIT; } else { return false; } if (polarity) { self->handle.Init.CLKPolarity = SPI_POLARITY_HIGH; } else { self->handle.Init.CLKPolarity = SPI_POLARITY_LOW; } if (phase) { self->handle.Init.CLKPhase = SPI_PHASE_2EDGE; } else { self->handle.Init.CLKPhase = SPI_PHASE_1EDGE; } self->handle.Init.BaudRatePrescaler = stm32_baud_to_spi_div(baudrate, &self->prescaler); self->handle.Init.Mode = SPI_MODE_MASTER; self->handle.Init.Direction = SPI_DIRECTION_2LINES; self->handle.Init.NSS = SPI_NSS_SOFT; self->handle.Init.FirstBit = SPI_FIRSTBIT_MSB; self->handle.Init.TIMode = SPI_TIMODE_DISABLE; self->handle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; self->handle.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&self->handle) != HAL_OK) { mp_raise_RuntimeError(translate("SPI Re-initialization error")); } self->baudrate = baudrate; self->polarity = polarity; self->phase = phase; self->bits = bits; return true; } bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) { bool grabbed_lock = false; //Critical section code that may be required at some point. // uint32_t store_primask = __get_PRIMASK(); // __disable_irq(); // __DMB(); if (!self->has_lock) { grabbed_lock = true; self->has_lock = true; } // __DMB(); // __set_PRIMASK(store_primask); return grabbed_lock; } bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) { return self->has_lock; } void common_hal_busio_spi_unlock(busio_spi_obj_t *self) { self->has_lock = false; } bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size_t len) { HAL_StatusTypeDef result = HAL_SPI_Transmit (&self->handle, (uint8_t *)data, (uint16_t)len, 2); return result == HAL_OK ? 1 : 0; } bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len, uint8_t write_value) { HAL_StatusTypeDef result = HAL_SPI_Receive (&self->handle, data, (uint16_t)len, 2); return result == HAL_OK ? 1 : 0; } bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) { HAL_StatusTypeDef result = HAL_SPI_TransmitReceive (&self->handle, data_out, data_in, (uint16_t)len,2); return result == HAL_OK ? 1 : 0; } uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) { //returns actual frequency uint32_t result = HAL_RCC_GetPCLK2Freq()/self->prescaler; return result; } uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) { return self->phase; } uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) { return self->polarity; }