/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/runtime.h" #include "py/gc.h" #include "timer.h" #include "servo.h" #include "pin.h" #include "irq.h" /// \moduleref pyb /// \class Timer - periodically call a function /// /// Timers can be used for a great variety of tasks. At the moment, only /// the simplest case is implemented: that of calling a function periodically. /// /// Each timer consists of a counter that counts up at a certain rate. The rate /// at which it counts is the peripheral clock frequency (in Hz) divided by the /// timer prescaler. When the counter reaches the timer period it triggers an /// event, and the counter resets back to zero. By using the callback method, /// the timer event can call a Python function. /// /// Example usage to toggle an LED at a fixed frequency: /// /// tim = pyb.Timer(4) # create a timer object using timer 4 /// tim.init(freq=2) # trigger at 2Hz /// tim.callback(lambda t:pyb.LED(1).toggle()) /// /// Further examples: /// /// tim = pyb.Timer(4, freq=100) # freq in Hz /// tim = pyb.Timer(4, prescaler=0, period=99) /// tim.counter() # get counter (can also set) /// tim.prescaler(2) # set prescaler (can also get) /// tim.period(199) # set period (can also get) /// tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance) /// tim.callback(None) # clear callback /// /// *Note:* Timer 3 is used for fading the blue LED. Timer 5 controls /// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing. /// It is recommended to use the other timers in your programs. // The timers can be used by multiple drivers, and need a common point for // the interrupts to be dispatched, so they are all collected here. // // TIM3: // - LED 4, PWM to set the LED intensity // // TIM5: // - servo controller, PWM // // TIM6: // - ADC, DAC for read_timed and write_timed typedef enum { CHANNEL_MODE_PWM_NORMAL, CHANNEL_MODE_PWM_INVERTED, CHANNEL_MODE_OC_TIMING, CHANNEL_MODE_OC_ACTIVE, CHANNEL_MODE_OC_INACTIVE, CHANNEL_MODE_OC_TOGGLE, CHANNEL_MODE_OC_FORCED_ACTIVE, CHANNEL_MODE_OC_FORCED_INACTIVE, CHANNEL_MODE_IC, CHANNEL_MODE_ENC_A, CHANNEL_MODE_ENC_B, CHANNEL_MODE_ENC_AB, } pyb_channel_mode; STATIC const struct { qstr name; uint32_t oc_mode; } channel_mode_info[] = { { MP_QSTR_PWM, TIM_OCMODE_PWM1 }, { MP_QSTR_PWM_INVERTED, TIM_OCMODE_PWM2 }, { MP_QSTR_OC_TIMING, TIM_OCMODE_TIMING }, { MP_QSTR_OC_ACTIVE, TIM_OCMODE_ACTIVE }, { MP_QSTR_OC_INACTIVE, TIM_OCMODE_INACTIVE }, { MP_QSTR_OC_TOGGLE, TIM_OCMODE_TOGGLE }, { MP_QSTR_OC_FORCED_ACTIVE, TIM_OCMODE_FORCED_ACTIVE }, { MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE }, { MP_QSTR_IC, 0 }, { MP_QSTR_ENC_A, TIM_ENCODERMODE_TI1 }, { MP_QSTR_ENC_B, TIM_ENCODERMODE_TI2 }, { MP_QSTR_ENC_AB, TIM_ENCODERMODE_TI12 }, }; enum { BRK_OFF, BRK_LOW, BRK_HIGH, }; typedef struct _pyb_timer_channel_obj_t { mp_obj_base_t base; struct _pyb_timer_obj_t *timer; uint8_t channel; uint8_t mode; mp_obj_t callback; struct _pyb_timer_channel_obj_t *next; } pyb_timer_channel_obj_t; typedef struct _pyb_timer_obj_t { mp_obj_base_t base; uint8_t tim_id; uint8_t is_32bit; mp_obj_t callback; TIM_HandleTypeDef tim; IRQn_Type irqn; pyb_timer_channel_obj_t *channel; } pyb_timer_obj_t; // The following yields TIM_IT_UPDATE when channel is zero and // TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4 #define TIMER_IRQ_MASK(channel) (1 << (channel)) #define TIMER_CNT_MASK(self) ((self)->is_32bit ? 0xffffffff : 0xffff) #define TIMER_CHANNEL(self) ((((self)->channel) - 1) << 2) TIM_HandleTypeDef TIM5_Handle; TIM_HandleTypeDef TIM6_Handle; #define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(MP_STATE_PORT(pyb_timer_obj_all)) STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in); STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback); STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback); void timer_init0(void) { for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) { MP_STATE_PORT(pyb_timer_obj_all)[i] = NULL; } } // unregister all interrupt sources void timer_deinit(void) { for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) { pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[i]; if (tim != NULL) { pyb_timer_deinit(MP_OBJ_FROM_PTR(tim)); } } } #if defined(TIM5) // TIM5 is set-up for the servo controller // This function inits but does not start the timer void timer_tim5_init(void) { // TIM5 clock enable __HAL_RCC_TIM5_CLK_ENABLE(); // set up and enable interrupt NVIC_SetPriority(TIM5_IRQn, IRQ_PRI_TIM5); HAL_NVIC_EnableIRQ(TIM5_IRQn); // PWM clock configuration TIM5_Handle.Instance = TIM5; TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_PWM_Init(&TIM5_Handle); } #endif #if defined(TIM6) // Init TIM6 with a counter-overflow at the given frequency (given in Hz) // TIM6 is used by the DAC and ADC for auto sampling at a given frequency // This function inits but does not start the timer TIM_HandleTypeDef *timer_tim6_init(uint freq) { // TIM6 clock enable __HAL_RCC_TIM6_CLK_ENABLE(); // Timer runs at SystemCoreClock / 2 // Compute the prescaler value so TIM6 triggers at freq-Hz uint32_t period = MAX(1, timer_get_source_freq(6) / freq); uint32_t prescaler = 1; while (period > 0xffff) { period >>= 1; prescaler <<= 1; } // Time base clock configuration TIM6_Handle.Instance = TIM6; TIM6_Handle.Init.Period = period - 1; TIM6_Handle.Init.Prescaler = prescaler - 1; TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6 TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6 HAL_TIM_Base_Init(&TIM6_Handle); return &TIM6_Handle; } #endif // Interrupt dispatch void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { #if MICROPY_HW_ENABLE_SERVO if (htim == &TIM5_Handle) { servo_timer_irq_callback(); } #endif } // Get the frequency (in Hz) of the source clock for the given timer. // On STM32F405/407/415/417 there are 2 cases for how the clock freq is set. // If the APB prescaler is 1, then the timer clock is equal to its respective // APB clock. Otherwise (APB prescaler > 1) the timer clock is twice its // respective APB clock. See DM00031020 Rev 4, page 115. uint32_t timer_get_source_freq(uint32_t tim_id) { #if defined(STM32H5) uint32_t source, ppre; if ((2 <= tim_id && tim_id <= 7) || (12 <= tim_id && tim_id <= 14)) { // TIM{2-7,12-14} are on APB1 source = HAL_RCC_GetPCLK1Freq(); ppre = (RCC->CFGR2 >> RCC_CFGR2_PPRE1_Pos) & 7; } else { // TIM{1,8,15-17} are on APB2 source = HAL_RCC_GetPCLK2Freq(); ppre = (RCC->CFGR2 >> RCC_CFGR2_PPRE2_Pos) & 7; } if (RCC->CFGR1 & RCC_CFGR1_TIMPRE) { if (ppre == 0 || ppre == 4 || ppre == 5) { // PPREx divider is 1, 2 or 4. return 2 * source; } else { return 4 * source; } } else { if (ppre == 0 || ppre == 4) { // PPREx divider is 1 or 2. return HAL_RCC_GetHCLKFreq(); } else { return 2 * source; } } #else uint32_t source, clk_div; if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) { // TIM{1,8,9,10,11} are on APB2 #if defined(STM32F0) || defined(STM32G0) source = HAL_RCC_GetPCLK1Freq(); clk_div = RCC->CFGR & RCC_CFGR_PPRE; #elif defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ) source = HAL_RCC_GetPCLK2Freq(); clk_div = RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2; #elif defined(STM32H7) source = HAL_RCC_GetPCLK2Freq(); clk_div = RCC->D2CFGR & RCC_D2CFGR_D2PPRE2; #else source = HAL_RCC_GetPCLK2Freq(); clk_div = RCC->CFGR & RCC_CFGR_PPRE2; #endif } else { // TIM{2,3,4,5,6,7,12,13,14} are on APB1 source = HAL_RCC_GetPCLK1Freq(); #if defined(STM32F0) || defined(STM32G0) clk_div = RCC->CFGR & RCC_CFGR_PPRE; #elif defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ) clk_div = RCC->CDCFGR1 & RCC_CDCFGR2_CDPPRE1; #elif defined(STM32H7) clk_div = RCC->D2CFGR & RCC_D2CFGR_D2PPRE1; #else clk_div = RCC->CFGR & RCC_CFGR_PPRE1; #endif } if (clk_div != 0) { // APB prescaler for this timer is > 1 source *= 2; } return source; #endif } /******************************************************************************/ /* MicroPython bindings */ STATIC const mp_obj_type_t pyb_timer_channel_type; // This is the largest value that we can multiply by 100 and have the result // fit in a uint32_t. #define MAX_PERIOD_DIV_100 42949672 // computes prescaler and period so TIM triggers at freq-Hz STATIC uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) { uint32_t source_freq = timer_get_source_freq(self->tim_id); uint32_t prescaler = 1; uint32_t period; if (0) { #if MICROPY_PY_BUILTINS_FLOAT } else if (mp_obj_is_type(freq_in, &mp_type_float)) { float freq = mp_obj_get_float_to_f(freq_in); if (freq <= 0) { goto bad_freq; } while (freq < 1 && prescaler < 6553) { prescaler *= 10; freq *= 10.0f; } period = (uint32_t)((float)source_freq / freq); #endif } else { mp_int_t freq = mp_obj_get_int(freq_in); if (freq <= 0) { goto bad_freq; bad_freq: mp_raise_ValueError(MP_ERROR_TEXT("must have positive freq")); } period = source_freq / freq; } period = MAX(1, period); while (period > TIMER_CNT_MASK(self)) { // if we can divide exactly, do that first if (period % 5 == 0) { prescaler *= 5; period /= 5; } else if (period % 3 == 0) { prescaler *= 3; period /= 3; } else { // may not divide exactly, but loses minimal precision prescaler <<= 1; period >>= 1; } } *period_out = (period - 1) & TIMER_CNT_MASK(self); return (prescaler - 1) & 0xffff; } // computes prescaler and period so TIM triggers with a period of t_num/t_den seconds STATIC uint32_t compute_prescaler_period_from_t(pyb_timer_obj_t *self, int32_t t_num, int32_t t_den, uint32_t *period_out) { uint32_t source_freq = timer_get_source_freq(self->tim_id); if (t_num <= 0 || t_den <= 0) { mp_raise_ValueError(MP_ERROR_TEXT("must have positive freq")); } uint64_t period = (uint64_t)source_freq * (uint64_t)t_num / (uint64_t)t_den; uint32_t prescaler = 1; while (period > TIMER_CNT_MASK(self)) { // if we can divide exactly, and without prescaler overflow, do that first if (prescaler <= 13107 && period % 5 == 0) { prescaler *= 5; period /= 5; } else if (prescaler <= 21845 && period % 3 == 0) { prescaler *= 3; period /= 3; } else { // may not divide exactly, but loses minimal precision uint32_t period_lsb = period & 1; prescaler <<= 1; period >>= 1; if (period < prescaler) { // round division up prescaler |= period_lsb; } if (prescaler > 0x10000) { mp_raise_ValueError(MP_ERROR_TEXT("period too large")); } } } *period_out = (period - 1) & TIMER_CNT_MASK(self); return (prescaler - 1) & 0xffff; } // Helper function for determining the period used for calculating percent STATIC uint32_t compute_period(pyb_timer_obj_t *self) { // In center mode, compare == period corresponds to 100% // In edge mode, compare == (period + 1) corresponds to 100% uint32_t period = (__HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self)); if (period != 0xffffffff) { if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP || self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) { // Edge mode period++; } } return period; } // Helper function to compute PWM value from timer period and percent value. // 'percent_in' can be an int or a float between 0 and 100 (out of range // values are clamped). STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) { uint32_t cmp; if (0) { #if MICROPY_PY_BUILTINS_FLOAT } else if (mp_obj_is_type(percent_in, &mp_type_float)) { mp_float_t percent = mp_obj_get_float(percent_in); if (percent <= 0.0) { cmp = 0; } else if (percent >= 100.0) { cmp = period; } else { cmp = (uint32_t)(percent / MICROPY_FLOAT_CONST(100.0) * ((mp_float_t)period)); } #endif } else { // For integer arithmetic, if period is large and 100*period will // overflow, then divide period before multiplying by cmp. Otherwise // do it the other way round to retain precision. mp_int_t percent = mp_obj_get_int(percent_in); if (percent <= 0) { cmp = 0; } else if (percent >= 100) { cmp = period; } else if (period > MAX_PERIOD_DIV_100) { cmp = (uint32_t)percent * (period / 100); } else { cmp = ((uint32_t)percent * period) / 100; } } return cmp; } // Helper function to compute percentage from timer perion and PWM value. STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) { #if MICROPY_PY_BUILTINS_FLOAT mp_float_t percent; if (cmp >= period) { percent = 100.0; } else { percent = (mp_float_t)cmp * 100.0 / ((mp_float_t)period); } return mp_obj_new_float(percent); #else mp_int_t percent; if (cmp >= period) { percent = 100; } else if (cmp > MAX_PERIOD_DIV_100) { percent = cmp / (period / 100); } else { percent = cmp * 100 / period; } return mp_obj_new_int(percent); #endif } #if !defined(STM32L0) && !defined(STM32L1) // Computes the 8-bit value for the DTG field in the BDTR register. // // 1 tick = 1 count of the timer's clock (source_freq) divided by div. // 0-128 ticks in increments of 1 // 128-256 ticks in increments of 2 // 256-512 ticks in increments of 8 // 512-1008 ticks in increments of 16 STATIC uint32_t compute_dtg_from_ticks(mp_int_t ticks) { if (ticks <= 0) { return 0; } if (ticks < 128) { return ticks; } if (ticks < 256) { return 0x80 | ((ticks - 128) / 2); } if (ticks < 512) { return 0xC0 | ((ticks - 256) / 8); } if (ticks < 1008) { return 0xE0 | ((ticks - 512) / 16); } return 0xFF; } // Given the 8-bit value stored in the DTG field of the BDTR register, compute // the number of ticks. STATIC mp_int_t compute_ticks_from_dtg(uint32_t dtg) { if ((dtg & 0x80) == 0) { return dtg & 0x7F; } if ((dtg & 0xC0) == 0x80) { return 128 + ((dtg & 0x3F) * 2); } if ((dtg & 0xE0) == 0xC0) { return 256 + ((dtg & 0x1F) * 8); } return 512 + ((dtg & 0x1F) * 16); } STATIC void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks, mp_int_t brk) { TIM_BreakDeadTimeConfigTypeDef deadTimeConfig = {0}; deadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE; deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; deadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; deadTimeConfig.DeadTime = compute_dtg_from_ticks(ticks); deadTimeConfig.BreakState = brk == BRK_OFF ? TIM_BREAK_DISABLE : TIM_BREAK_ENABLE; deadTimeConfig.BreakPolarity = brk == BRK_LOW ? TIM_BREAKPOLARITY_LOW : TIM_BREAKPOLARITY_HIGH; #if defined(STM32F7) || defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB) deadTimeConfig.BreakFilter = 0; deadTimeConfig.Break2State = TIM_BREAK_DISABLE; deadTimeConfig.Break2Polarity = TIM_BREAKPOLARITY_LOW; deadTimeConfig.Break2Filter = 0; #endif deadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig); } #endif TIM_HandleTypeDef *pyb_timer_get_handle(mp_obj_t timer) { if (mp_obj_get_type(timer) != &pyb_timer_type) { mp_raise_ValueError(MP_ERROR_TEXT("need a Timer object")); } pyb_timer_obj_t *self = MP_OBJ_TO_PTR(timer); return &self->tim; } STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->tim.State == HAL_TIM_STATE_RESET) { mp_printf(print, "Timer(%u)", self->tim_id); } else { uint32_t prescaler = self->tim.Instance->PSC & 0xffff; uint32_t period = __HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self); // for efficiency, we compute and print freq as an int (not a float) uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1)); mp_printf(print, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u", self->tim_id, freq, prescaler, period, self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ? "UP" : self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN ? "DOWN" : "CENTER", self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 : self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1); #if !defined(STM32L0) && !defined(STM32L1) #if defined(IS_TIM_ADVANCED_INSTANCE) if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) #elif defined(IS_TIM_BREAK_INSTANCE) if (IS_TIM_BREAK_INSTANCE(self->tim.Instance)) #else if (0) #endif { mp_printf(print, ", deadtime=%u", compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG)); if ((self->tim.Instance->BDTR & TIM_BDTR_BKE) == TIM_BDTR_BKE) { mp_printf(print, ", brk=%s", ((self->tim.Instance->BDTR & TIM_BDTR_BKP) == TIM_BDTR_BKP) ? "BRK_HIGH" : "BRK_LOW"); } else { mp_printf(print, ", brk=BRK_OFF"); } } #endif mp_print_str(print, ")"); } } /// \method init(*, freq, prescaler, period) /// Initialise the timer. Initialisation must be either by frequency (in Hz) /// or by prescaler and period: /// /// tim.init(freq=100) # set the timer to trigger at 100Hz /// tim.init(prescaler=83, period=999) # set the prescaler and period directly /// /// Keyword arguments: /// /// - `freq` - specifies the periodic frequency of the timer. You might also /// view this as the frequency with which the timer goes through /// one complete cycle. /// /// - `prescaler` [0-0xffff] - specifies the value to be loaded into the /// timer's Prescaler Register (PSC). The timer clock source is divided by /// (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14 /// have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11 /// have a clock source of 168 MHz (pyb.freq()[3] * 2). /// /// - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5. /// Specifies the value to be loaded into the timer's AutoReload /// Register (ARR). This determines the period of the timer (i.e. when the /// counter cycles). The timer counter will roll-over after `period + 1` /// timer clock cycles. /// /// - `mode` can be one of: /// - `Timer.UP` - configures the timer to count from 0 to ARR (default) /// - `Timer.DOWN` - configures the timer to count from ARR down to 0. /// - `Timer.CENTER` - confgures the timer to count from 0 to ARR and /// then back down to 0. /// /// - `div` can be one of 1, 2, or 4. Divides the timer clock to determine /// the sampling clock used by the digital filters. /// /// - `callback` - as per Timer.callback() /// /// - `deadtime` - specifies the amount of "dead" or inactive time between /// transitions on complimentary channels (both channels will be inactive) /// for this time). `deadtime` may be an integer between 0 and 1008, with /// the following restrictions: 0-128 in steps of 1. 128-256 in steps of /// 2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime` /// measures ticks of `source_freq` divided by `div` clock ticks. /// `deadtime` is only available on timers 1 and 8. /// /// - `brk` - specifies if the break mode is used to kill the output of /// the PWM when the BRK_IN input is asserted. The polarity set how the /// BRK_IN input is triggered. It can be set to `BRK_OFF`, `BRK_LOW` /// and `BRK_HIGH`. /// /// /// You must either specify freq or both of period and prescaler. STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_freq, ARG_prescaler, ARG_period, ARG_tick_hz, ARG_mode, ARG_div, ARG_callback, ARG_deadtime, ARG_brk }; static const mp_arg_t allowed_args[] = { { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, { MP_QSTR_tick_hz, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} }, { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} }, { MP_QSTR_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_deadtime, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_brk, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = BRK_OFF} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // set the TIM configuration values TIM_Base_InitTypeDef *init = &self->tim.Init; if (args[ARG_freq].u_obj != mp_const_none) { // set prescaler and period from desired frequency init->Prescaler = compute_prescaler_period_from_freq(self, args[ARG_freq].u_obj, &init->Period); } else if (args[ARG_prescaler].u_int != 0xffffffff && args[ARG_period].u_int != 0xffffffff) { // set prescaler and period directly init->Prescaler = args[ARG_prescaler].u_int; init->Period = args[ARG_period].u_int; } else if (args[ARG_period].u_int != 0xffffffff) { // set prescaler and period from desired period and tick_hz scale init->Prescaler = compute_prescaler_period_from_t(self, args[ARG_period].u_int, args[ARG_tick_hz].u_int, &init->Period); } else { mp_raise_TypeError(MP_ERROR_TEXT("must specify either freq, period, or prescaler and period")); } init->CounterMode = args[ARG_mode].u_int; if (!IS_TIM_COUNTER_MODE(init->CounterMode)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid mode (%d)"), init->CounterMode); } init->ClockDivision = args[ARG_div].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 : args[ARG_div].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 : TIM_CLOCKDIVISION_DIV1; #if !defined(STM32L0) && !defined(STM32L1) init->RepetitionCounter = 0; #endif // enable TIM clock switch (self->tim_id) { #if defined(TIM1) case 1: __HAL_RCC_TIM1_CLK_ENABLE(); break; #endif case 2: __HAL_RCC_TIM2_CLK_ENABLE(); break; #if defined(TIM3) case 3: __HAL_RCC_TIM3_CLK_ENABLE(); break; #endif #if defined(TIM4) case 4: __HAL_RCC_TIM4_CLK_ENABLE(); break; #endif #if defined(TIM5) case 5: __HAL_RCC_TIM5_CLK_ENABLE(); break; #endif #if defined(TIM6) case 6: __HAL_RCC_TIM6_CLK_ENABLE(); break; #endif #if defined(TIM7) case 7: __HAL_RCC_TIM7_CLK_ENABLE(); break; #endif #if defined(TIM8) case 8: __HAL_RCC_TIM8_CLK_ENABLE(); break; #endif #if defined(TIM9) case 9: __HAL_RCC_TIM9_CLK_ENABLE(); break; #endif #if defined(TIM10) case 10: __HAL_RCC_TIM10_CLK_ENABLE(); break; #endif #if defined(TIM11) case 11: __HAL_RCC_TIM11_CLK_ENABLE(); break; #endif #if defined(TIM12) case 12: __HAL_RCC_TIM12_CLK_ENABLE(); break; #endif #if defined(TIM13) case 13: __HAL_RCC_TIM13_CLK_ENABLE(); break; #endif #if defined(TIM14) case 14: __HAL_RCC_TIM14_CLK_ENABLE(); break; #endif #if defined(TIM15) case 15: __HAL_RCC_TIM15_CLK_ENABLE(); break; #endif #if defined(TIM16) case 16: __HAL_RCC_TIM16_CLK_ENABLE(); break; #endif #if defined(TIM17) case 17: __HAL_RCC_TIM17_CLK_ENABLE(); break; #endif #if defined(TIM18) case 18: __HAL_RCC_TIM18_CLK_ENABLE(); break; #endif #if defined(TIM19) case 19: __HAL_RCC_TIM19_CLK_ENABLE(); break; #endif #if defined(TIM20) case 20: __HAL_RCC_TIM20_CLK_ENABLE(); break; #endif #if defined(TIM21) case 21: __HAL_RCC_TIM21_CLK_ENABLE(); break; #endif #if defined(TIM22) case 22: __HAL_RCC_TIM22_CLK_ENABLE(); break; #endif } // set IRQ priority (if not a special timer) if (self->tim_id != 5) { NVIC_SetPriority(IRQn_NONNEG(self->irqn), IRQ_PRI_TIMX); if (self->tim_id == 1) { #if defined(TIM1) NVIC_SetPriority(TIM1_CC_IRQn, IRQ_PRI_TIMX); #endif } else if (self->tim_id == 8) { #if defined(TIM8) NVIC_SetPriority(TIM8_CC_IRQn, IRQ_PRI_TIMX); #endif } } // init TIM HAL_TIM_Base_Init(&self->tim); #if !defined(STM32L0) && !defined(STM32L1) #if defined(IS_TIM_ADVANCED_INSTANCE) if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) #elif defined(IS_TIM_BREAK_INSTANCE) if (IS_TIM_BREAK_INSTANCE(self->tim.Instance)) #else if (0) #endif { config_deadtime(self, args[ARG_deadtime].u_int, args[ARG_brk].u_int); } #endif // Enable ARPE so that the auto-reload register is buffered. // This allows to smoothly change the frequency of the timer. self->tim.Instance->CR1 |= TIM_CR1_ARPE; // Start the timer running if (args[ARG_callback].u_obj == mp_const_none) { HAL_TIM_Base_Start(&self->tim); } else { pyb_timer_callback(MP_OBJ_FROM_PTR(self), args[ARG_callback].u_obj); } return mp_const_none; } // This table encodes the timer instance and irq number (for the update irq). // It assumes that timer instance pointer has the lower 8 bits cleared. #define TIM_ENTRY(id, irq) [id - 1] = (uint32_t)TIM##id | irq STATIC const uint32_t tim_instance_table[MICROPY_HW_MAX_TIMER] = { #if defined(TIM1) #if defined(STM32F0) || defined(STM32G0) TIM_ENTRY(1, TIM1_BRK_UP_TRG_COM_IRQn), #elif defined(STM32F4) || defined(STM32F7) TIM_ENTRY(1, TIM1_UP_TIM10_IRQn), #elif defined(STM32H7) TIM_ENTRY(1, TIM1_UP_IRQn), #elif defined(STM32G4) || defined(STM32L4) || defined(STM32WB) TIM_ENTRY(1, TIM1_UP_TIM16_IRQn), #endif #endif TIM_ENTRY(2, TIM2_IRQn), #if defined(TIM3) #if defined(STM32G0B1xx) || defined(STM32G0C1xx) TIM_ENTRY(3, TIM3_TIM4_IRQn), #else TIM_ENTRY(3, TIM3_IRQn), #endif #endif #if defined(TIM4) #if defined(STM32G0B1xx) || defined(STM32G0C1xx) TIM_ENTRY(3, TIM3_TIM4_IRQn), #else TIM_ENTRY(4, TIM4_IRQn), #endif #endif #if defined(TIM5) TIM_ENTRY(5, TIM5_IRQn), #endif #if defined(TIM6) #if defined(STM32F412Zx) || defined(STM32L1) TIM_ENTRY(6, TIM6_IRQn), #elif defined(STM32G0) TIM_ENTRY(6, TIM6_DAC_LPTIM1_IRQn), #elif defined(STM32H5) TIM_ENTRY(6, TIM6_IRQn), #else TIM_ENTRY(6, TIM6_DAC_IRQn), #endif #endif #if defined(TIM7) #if defined(STM32G0) TIM_ENTRY(7, TIM7_LPTIM2_IRQn), #elif defined(STM32G4) TIM_ENTRY(7, TIM7_DAC_IRQn), #else TIM_ENTRY(7, TIM7_IRQn), #endif #endif #if defined(TIM8) #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7) TIM_ENTRY(8, TIM8_UP_TIM13_IRQn), #else TIM_ENTRY(8, TIM8_UP_IRQn), #endif #endif #if defined(TIM9) #if defined(STM32L1) TIM_ENTRY(9, TIM9_IRQn), #else TIM_ENTRY(9, TIM1_BRK_TIM9_IRQn), #endif #endif #if defined(TIM10) #if defined(STM32L1) TIM_ENTRY(10, TIM10_IRQn), #else TIM_ENTRY(10, TIM1_UP_TIM10_IRQn), #endif #endif #if defined(TIM11) #if defined(STM32L1) TIM_ENTRY(11, TIM11_IRQn), #else TIM_ENTRY(11, TIM1_TRG_COM_TIM11_IRQn), #endif #endif #if defined(TIM12) #if defined(STM32H5) TIM_ENTRY(12, TIM12_IRQn), #else TIM_ENTRY(12, TIM8_BRK_TIM12_IRQn), #endif #endif #if defined(TIM13) #if defined(STM32H5) TIM_ENTRY(13, TIM13_IRQn), #else TIM_ENTRY(13, TIM8_UP_TIM13_IRQn), #endif #endif #if defined(STM32F0) || defined(STM32G0) || defined(STM32H5) TIM_ENTRY(14, TIM14_IRQn), #elif defined(TIM14) TIM_ENTRY(14, TIM8_TRG_COM_TIM14_IRQn), #endif #if defined(TIM15) #if defined(STM32F0) || defined(STM32G0) || defined(STM32H5) || defined(STM32H7) TIM_ENTRY(15, TIM15_IRQn), #else TIM_ENTRY(15, TIM1_BRK_TIM15_IRQn), #endif #endif #if defined(TIM16) #if defined(STM32G0B1xx) || defined(STM32G0C1xx) TIM_ENTRY(16, TIM16_FDCAN_IT0_IRQn), #elif defined(STM32F0) || defined(STM32G0) || defined(STM32H5) || defined(STM32H7) || defined(STM32WL) TIM_ENTRY(16, TIM16_IRQn), #else TIM_ENTRY(16, TIM1_UP_TIM16_IRQn), #endif #endif #if defined(TIM17) #if defined(STM32G0B1xx) || defined(STM32G0C1xx) TIM_ENTRY(17, TIM17_FDCAN_IT1_IRQn), #elif defined(STM32F0) || defined(STM32G0) || defined(STM32H5) || defined(STM32H7) || defined(STM32WL) TIM_ENTRY(17, TIM17_IRQn), #else TIM_ENTRY(17, TIM1_TRG_COM_TIM17_IRQn), #endif #endif #if defined(TIM20) TIM_ENTRY(20, TIM20_UP_IRQn), #endif }; #undef TIM_ENTRY /// \classmethod \constructor(id, ...) /// Construct a new timer object of the given id. If additional /// arguments are given, then the timer is initialised by `init(...)`. /// `id` can be 1 to 14, excluding 3. STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // get the timer id mp_int_t tim_id = mp_obj_get_int(args[0]); // check if the timer exists if (tim_id <= 0 || tim_id > MICROPY_HW_MAX_TIMER || tim_instance_table[tim_id - 1] == 0) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Timer(%d) doesn't exist"), tim_id); } // check if the timer is reserved for system use or not if (MICROPY_HW_TIM_IS_RESERVED(tim_id)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Timer(%d) is reserved"), tim_id); } pyb_timer_obj_t *tim; if (MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1] == NULL) { // create new Timer object tim = m_new_obj(pyb_timer_obj_t); memset(tim, 0, sizeof(*tim)); tim->base.type = &pyb_timer_type; tim->tim_id = tim_id; #if defined(STM32L1) tim->is_32bit = tim_id == 5; #else tim->is_32bit = tim_id == 2 || tim_id == 5; #endif tim->callback = mp_const_none; uint32_t ti = tim_instance_table[tim_id - 1]; tim->tim.Instance = (TIM_TypeDef *)(ti & 0xffffff00); tim->irqn = ti & 0xff; MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1] = tim; } else { // reference existing Timer object tim = MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1]; } if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args); } return MP_OBJ_FROM_PTR(tim); } STATIC mp_obj_t pyb_timer_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_timer_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init); // timer.deinit() STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) { pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in); // Disable the base interrupt pyb_timer_callback(self_in, mp_const_none); pyb_timer_channel_obj_t *chan = self->channel; self->channel = NULL; // Disable the channel interrupts while (chan != NULL) { pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), mp_const_none); pyb_timer_channel_obj_t *prev_chan = chan; chan = chan->next; prev_chan->next = NULL; } self->tim.State = HAL_TIM_STATE_RESET; self->tim.Instance->CCER = 0x0000; // disable all capture/compare outputs self->tim.Instance->CR1 = 0x0000; // disable the timer and reset its state return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit); /// \method channel(channel, mode, ...) /// /// If only a channel number is passed, then a previously initialized channel /// object is returned (or `None` if there is no previous channel). /// /// Otherwise, a TimerChannel object is initialized and returned. /// /// Each channel can be configured to perform pwm, output compare, or /// input capture. All channels share the same underlying timer, which means /// that they share the same timer clock. /// /// Keyword arguments: /// /// - `mode` can be one of: /// - `Timer.PWM` - configure the timer in PWM mode (active high). /// - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low). /// - `Timer.OC_TIMING` - indicates that no pin is driven. /// - `Timer.OC_ACTIVE` - the pin will be made active when a compare /// match occurs (active is determined by polarity) /// - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare /// match occurs. /// - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs. /// - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored). /// - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored). /// - `Timer.IC` - configure the timer in Input Capture mode. /// - `Timer.ENC_A` --- configure the timer in Encoder mode. The counter only changes when CH1 changes. /// - `Timer.ENC_B` --- configure the timer in Encoder mode. The counter only changes when CH2 changes. /// - `Timer.ENC_AB` --- configure the timer in Encoder mode. The counter changes when CH1 or CH2 changes. /// /// - `callback` - as per TimerChannel.callback() /// /// - `pin` None (the default) or a Pin object. If specified (and not None) /// this will cause the alternate function of the the indicated pin /// to be configured for this timer channel. An error will be raised if /// the pin doesn't support any alternate functions for this timer channel. /// /// Keyword arguments for Timer.PWM modes: /// /// - `pulse_width` - determines the initial pulse width value to use. /// - `pulse_width_percent` - determines the initial pulse width percentage to use. /// /// Keyword arguments for Timer.OC modes: /// /// - `compare` - determines the initial value of the compare register. /// /// - `polarity` can be one of: /// - `Timer.HIGH` - output is active high /// - `Timer.LOW` - output is active low /// /// Optional keyword arguments for Timer.IC modes: /// /// - `polarity` can be one of: /// - `Timer.RISING` - captures on rising edge. /// - `Timer.FALLING` - captures on falling edge. /// - `Timer.BOTH` - captures on both edges. /// /// Note that capture only works on the primary channel, and not on the /// complimentary channels. /// /// Notes for Timer.ENC modes: /// /// - Requires 2 pins, so one or both pins will need to be configured to use /// the appropriate timer AF using the Pin API. /// - Read the encoder value using the timer.counter() method. /// - Only works on CH1 and CH2 (and not on CH1N or CH2N) /// - The channel number is ignored when setting the encoder mode. /// /// PWM Example: /// /// timer = pyb.Timer(2, freq=1000) /// ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000) /// ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000) STATIC mp_obj_t pyb_timer_channel(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_pulse_width, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_compare, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} }, }; pyb_timer_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_int_t channel = mp_obj_get_int(pos_args[1]); if (channel < 1 || channel > 4) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid channel (%d)"), channel); } pyb_timer_channel_obj_t *chan = self->channel; pyb_timer_channel_obj_t *prev_chan = NULL; while (chan != NULL) { if (chan->channel == channel) { break; } prev_chan = chan; chan = chan->next; } // If only the channel number is given return the previously allocated // channel (or None if no previous channel). if (n_args == 2 && kw_args->used == 0) { if (chan) { return MP_OBJ_FROM_PTR(chan); } return mp_const_none; } // If there was already a channel, then remove it from the list. Note that // the order we do things here is important so as to appear atomic to // the IRQ handler. if (chan) { // Turn off any IRQ associated with the channel. pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), mp_const_none); // Unlink the channel from the list. if (prev_chan) { prev_chan->next = chan->next; } self->channel = chan->next; chan->next = NULL; } // Allocate and initialize a new channel mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); chan = m_new_obj(pyb_timer_channel_obj_t); memset(chan, 0, sizeof(*chan)); chan->base.type = &pyb_timer_channel_type; chan->timer = self; chan->channel = channel; chan->mode = args[0].u_int; chan->callback = args[1].u_obj; mp_obj_t pin_obj = args[2].u_obj; if (pin_obj != mp_const_none) { if (!mp_obj_is_type(pin_obj, &pin_type)) { mp_raise_ValueError(MP_ERROR_TEXT("pin argument needs to be be a Pin type")); } const pin_obj_t *pin = MP_OBJ_TO_PTR(pin_obj); const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id); if (af == NULL) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Pin(%q) doesn't have an alt for Timer(%d)"), pin->name, self->tim_id); } // pin.init(mode=AF_PP, alt=idx) const mp_obj_t args2[6] = { MP_OBJ_FROM_PTR(&pin_init_obj), pin_obj, MP_OBJ_NEW_QSTR(MP_QSTR_mode), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP), MP_OBJ_NEW_QSTR(MP_QSTR_alt), MP_OBJ_NEW_SMALL_INT(af->idx) }; mp_call_method_n_kw(0, 2, args2); } // Link the channel to the timer before we turn the channel on. // Note that this needs to appear atomic to the IRQ handler (the write // to self->channel is atomic, so we're good, but I thought I'd mention // in case this was ever changed in the future). chan->next = self->channel; self->channel = chan; switch (chan->mode) { case CHANNEL_MODE_PWM_NORMAL: case CHANNEL_MODE_PWM_INVERTED: { TIM_OC_InitTypeDef oc_config; oc_config.OCMode = channel_mode_info[chan->mode].oc_mode; if (args[4].u_obj != mp_const_none) { // pulse width percent given uint32_t period = compute_period(self); oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj); } else { // use absolute pulse width value (defaults to 0 if nothing given) oc_config.Pulse = args[3].u_int; } oc_config.OCPolarity = TIM_OCPOLARITY_HIGH; oc_config.OCFastMode = TIM_OCFAST_DISABLE; #if !defined(STM32L0) && !defined(STM32L1) oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH; oc_config.OCIdleState = TIM_OCIDLESTATE_SET; oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET; #endif HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan)); if (chan->callback == mp_const_none) { HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan)); } else { pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback); } #if !defined(STM32L0) && !defined(STM32L1) // Start the complimentary channel too (if its supported) if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) { HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan)); } #endif break; } case CHANNEL_MODE_OC_TIMING: case CHANNEL_MODE_OC_ACTIVE: case CHANNEL_MODE_OC_INACTIVE: case CHANNEL_MODE_OC_TOGGLE: case CHANNEL_MODE_OC_FORCED_ACTIVE: case CHANNEL_MODE_OC_FORCED_INACTIVE: { TIM_OC_InitTypeDef oc_config; oc_config.OCMode = channel_mode_info[chan->mode].oc_mode; oc_config.Pulse = args[5].u_int; oc_config.OCPolarity = args[6].u_int; if (oc_config.OCPolarity == 0xffffffff) { oc_config.OCPolarity = TIM_OCPOLARITY_HIGH; } oc_config.OCFastMode = TIM_OCFAST_DISABLE; #if !defined(STM32L0) && !defined(STM32L1) if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) { oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH; } else { oc_config.OCNPolarity = TIM_OCNPOLARITY_LOW; } oc_config.OCIdleState = TIM_OCIDLESTATE_SET; oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET; #endif if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid polarity (%d)"), oc_config.OCPolarity); } HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan)); if (chan->callback == mp_const_none) { HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan)); } else { pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback); } #if !defined(STM32L0) && !defined(STM32L1) // Start the complimentary channel too (if its supported) if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) { HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan)); } #endif break; } case CHANNEL_MODE_IC: { TIM_IC_InitTypeDef ic_config; ic_config.ICPolarity = args[6].u_int; if (ic_config.ICPolarity == 0xffffffff) { ic_config.ICPolarity = TIM_ICPOLARITY_RISING; } ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI; ic_config.ICPrescaler = TIM_ICPSC_DIV1; ic_config.ICFilter = 0; if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid polarity (%d)"), ic_config.ICPolarity); } HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan)); if (chan->callback == mp_const_none) { HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan)); } else { pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback); } break; } case CHANNEL_MODE_ENC_A: case CHANNEL_MODE_ENC_B: case CHANNEL_MODE_ENC_AB: { TIM_Encoder_InitTypeDef enc_config; enc_config.EncoderMode = channel_mode_info[chan->mode].oc_mode; enc_config.IC1Polarity = args[6].u_int; if (enc_config.IC1Polarity == 0xffffffff) { enc_config.IC1Polarity = TIM_ICPOLARITY_RISING; } enc_config.IC2Polarity = enc_config.IC1Polarity; enc_config.IC1Selection = TIM_ICSELECTION_DIRECTTI; enc_config.IC2Selection = TIM_ICSELECTION_DIRECTTI; enc_config.IC1Prescaler = TIM_ICPSC_DIV1; enc_config.IC2Prescaler = TIM_ICPSC_DIV1; enc_config.IC1Filter = 0; enc_config.IC2Filter = 0; if (!IS_TIM_IC_POLARITY(enc_config.IC1Polarity)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid polarity (%d)"), enc_config.IC1Polarity); } // Only Timers 1, 2, 3, 4, 5, and 8 support encoder mode if ( #if defined(TIM1) self->tim.Instance != TIM1 && #endif self->tim.Instance != TIM2 #if defined(TIM3) && self->tim.Instance != TIM3 #endif #if defined(TIM4) && self->tim.Instance != TIM4 #endif #if defined(TIM5) && self->tim.Instance != TIM5 #endif #if defined(TIM8) && self->tim.Instance != TIM8 #endif ) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("encoder not supported on timer %d"), self->tim_id); } // Disable & clear the timer interrupt so that we don't trigger // an interrupt by initializing the timer. __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE); HAL_TIM_Encoder_Init(&self->tim, &enc_config); __HAL_TIM_SET_COUNTER(&self->tim, 0); if (self->callback != mp_const_none) { __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE); __HAL_TIM_ENABLE_IT(&self->tim, TIM_IT_UPDATE); } HAL_TIM_Encoder_Start(&self->tim, TIM_CHANNEL_ALL); break; } default: mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid mode (%d)"), chan->mode); } return MP_OBJ_FROM_PTR(chan); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel); /// \method counter([value]) /// Get or set the timer counter. STATIC mp_obj_t pyb_timer_counter(size_t n_args, const mp_obj_t *args) { pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (n_args == 1) { // get return mp_obj_new_int(self->tim.Instance->CNT); } else { // set __HAL_TIM_SET_COUNTER(&self->tim, mp_obj_get_int(args[1])); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter); /// \method source_freq() /// Get the frequency of the source of the timer. STATIC mp_obj_t pyb_timer_source_freq(mp_obj_t self_in) { pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in); uint32_t source_freq = timer_get_source_freq(self->tim_id); return mp_obj_new_int(source_freq); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_source_freq_obj, pyb_timer_source_freq); /// \method freq([value]) /// Get or set the frequency for the timer (changes prescaler and period if set). STATIC mp_obj_t pyb_timer_freq(size_t n_args, const mp_obj_t *args) { pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (n_args == 1) { // get uint32_t prescaler = self->tim.Instance->PSC & 0xffff; uint32_t period = __HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self); uint32_t source_freq = timer_get_source_freq(self->tim_id); uint32_t divide_a = prescaler + 1; uint32_t divide_b = period + 1; #if MICROPY_PY_BUILTINS_FLOAT if (source_freq % divide_a != 0) { return mp_obj_new_float((mp_float_t)source_freq / (mp_float_t)divide_a / (mp_float_t)divide_b); } source_freq /= divide_a; if (source_freq % divide_b != 0) { return mp_obj_new_float((mp_float_t)source_freq / (mp_float_t)divide_b); } else { return mp_obj_new_int(source_freq / divide_b); } #else return mp_obj_new_int(source_freq / divide_a / divide_b); #endif } else { // set uint32_t period; uint32_t prescaler = compute_prescaler_period_from_freq(self, args[1], &period); self->tim.Instance->PSC = prescaler; __HAL_TIM_SET_AUTORELOAD(&self->tim, period); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_freq_obj, 1, 2, pyb_timer_freq); /// \method prescaler([value]) /// Get or set the prescaler for the timer. STATIC mp_obj_t pyb_timer_prescaler(size_t n_args, const mp_obj_t *args) { pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (n_args == 1) { // get return mp_obj_new_int(self->tim.Instance->PSC & 0xffff); } else { // set self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff; return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler); /// \method period([value]) /// Get or set the period of the timer. STATIC mp_obj_t pyb_timer_period(size_t n_args, const mp_obj_t *args) { pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (n_args == 1) { // get return mp_obj_new_int(__HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self)); } else { // set __HAL_TIM_SET_AUTORELOAD(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self)); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period); /// \method callback(fun) /// Set the function to be called when the timer triggers. /// `fun` is passed 1 argument, the timer object. /// If `fun` is `None` then the callback will be disabled. STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) { pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in); if (callback == mp_const_none) { // stop interrupt (but not timer) __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE); self->callback = mp_const_none; } else if (mp_obj_is_callable(callback)) { __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE); self->callback = callback; // start timer, so that it interrupts on overflow, but clear any // pending interrupts which may have been set by initializing it. __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE); HAL_TIM_Base_Stop(&self->tim); // internal timer state must be released before starting again HAL_TIM_Base_Start_IT(&self->tim); // This will re-enable the IRQ HAL_NVIC_EnableIRQ(self->irqn); } else { mp_raise_ValueError(MP_ERROR_TEXT("callback must be None or a callable object")); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback); STATIC const mp_rom_map_elem_t pyb_timer_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_timer_init_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_timer_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_channel), MP_ROM_PTR(&pyb_timer_channel_obj) }, { MP_ROM_QSTR(MP_QSTR_counter), MP_ROM_PTR(&pyb_timer_counter_obj) }, { MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&pyb_timer_source_freq_obj) }, { MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&pyb_timer_freq_obj) }, { MP_ROM_QSTR(MP_QSTR_prescaler), MP_ROM_PTR(&pyb_timer_prescaler_obj) }, { MP_ROM_QSTR(MP_QSTR_period), MP_ROM_PTR(&pyb_timer_period_obj) }, { MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&pyb_timer_callback_obj) }, { MP_ROM_QSTR(MP_QSTR_UP), MP_ROM_INT(TIM_COUNTERMODE_UP) }, { MP_ROM_QSTR(MP_QSTR_DOWN), MP_ROM_INT(TIM_COUNTERMODE_DOWN) }, { MP_ROM_QSTR(MP_QSTR_CENTER), MP_ROM_INT(TIM_COUNTERMODE_CENTERALIGNED1) }, { MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_INT(CHANNEL_MODE_PWM_NORMAL) }, { MP_ROM_QSTR(MP_QSTR_PWM_INVERTED), MP_ROM_INT(CHANNEL_MODE_PWM_INVERTED) }, { MP_ROM_QSTR(MP_QSTR_OC_TIMING), MP_ROM_INT(CHANNEL_MODE_OC_TIMING) }, { MP_ROM_QSTR(MP_QSTR_OC_ACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_ACTIVE) }, { MP_ROM_QSTR(MP_QSTR_OC_INACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_INACTIVE) }, { MP_ROM_QSTR(MP_QSTR_OC_TOGGLE), MP_ROM_INT(CHANNEL_MODE_OC_TOGGLE) }, { MP_ROM_QSTR(MP_QSTR_OC_FORCED_ACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) }, { MP_ROM_QSTR(MP_QSTR_OC_FORCED_INACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) }, { MP_ROM_QSTR(MP_QSTR_IC), MP_ROM_INT(CHANNEL_MODE_IC) }, { MP_ROM_QSTR(MP_QSTR_ENC_A), MP_ROM_INT(CHANNEL_MODE_ENC_A) }, { MP_ROM_QSTR(MP_QSTR_ENC_B), MP_ROM_INT(CHANNEL_MODE_ENC_B) }, { MP_ROM_QSTR(MP_QSTR_ENC_AB), MP_ROM_INT(CHANNEL_MODE_ENC_AB) }, { MP_ROM_QSTR(MP_QSTR_HIGH), MP_ROM_INT(TIM_OCPOLARITY_HIGH) }, { MP_ROM_QSTR(MP_QSTR_LOW), MP_ROM_INT(TIM_OCPOLARITY_LOW) }, { MP_ROM_QSTR(MP_QSTR_RISING), MP_ROM_INT(TIM_ICPOLARITY_RISING) }, { MP_ROM_QSTR(MP_QSTR_FALLING), MP_ROM_INT(TIM_ICPOLARITY_FALLING) }, { MP_ROM_QSTR(MP_QSTR_BOTH), MP_ROM_INT(TIM_ICPOLARITY_BOTHEDGE) }, { MP_ROM_QSTR(MP_QSTR_BRK_OFF), MP_ROM_INT(BRK_OFF) }, { MP_ROM_QSTR(MP_QSTR_BRK_LOW), MP_ROM_INT(BRK_LOW) }, { MP_ROM_QSTR(MP_QSTR_BRK_HIGH), MP_ROM_INT(BRK_HIGH) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( pyb_timer_type, MP_QSTR_Timer, MP_TYPE_FLAG_NONE, make_new, pyb_timer_make_new, print, pyb_timer_print, locals_dict, &pyb_timer_locals_dict ); /// \moduleref pyb /// \class TimerChannel - setup a channel for a timer. /// /// Timer channels are used to generate/capture a signal using a timer. /// /// TimerChannel objects are created using the Timer.channel() method. STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "TimerChannel(timer=%u, channel=%u, mode=%s)", self->timer->tim_id, self->channel, qstr_str(channel_mode_info[self->mode].name)); } /// \method capture([value]) /// Get or set the capture value associated with a channel. /// capture, compare, and pulse_width are all aliases for the same function. /// capture is the logical name to use when the channel is in input capture mode. /// \method compare([value]) /// Get or set the compare value associated with a channel. /// capture, compare, and pulse_width are all aliases for the same function. /// compare is the logical name to use when the channel is in output compare mode. /// \method pulse_width([value]) /// Get or set the pulse width value associated with a channel. /// capture, compare, and pulse_width are all aliases for the same function. /// pulse_width is the logical name to use when the channel is in PWM mode. /// /// In edge aligned mode, a pulse_width of `period + 1` corresponds to a duty cycle of 100% /// In center aligned mode, a pulse width of `period` corresponds to a duty cycle of 100% STATIC mp_obj_t pyb_timer_channel_capture_compare(size_t n_args, const mp_obj_t *args) { pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (n_args == 1) { // get return mp_obj_new_int(__HAL_TIM_GET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer)); } else { // set __HAL_TIM_SET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self), mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self->timer)); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare); /// \method pulse_width_percent([value]) /// Get or set the pulse width percentage associated with a channel. The value /// is a number between 0 and 100 and sets the percentage of the timer period /// for which the pulse is active. The value can be an integer or /// floating-point number for more accuracy. For example, a value of 25 gives /// a duty cycle of 25%. STATIC mp_obj_t pyb_timer_channel_pulse_width_percent(size_t n_args, const mp_obj_t *args) { pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(args[0]); uint32_t period = compute_period(self->timer); if (n_args == 1) { // get uint32_t cmp = __HAL_TIM_GET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer); return compute_percent_from_pwm_value(period, cmp); } else { // set uint32_t cmp = compute_pwm_value_from_percent(period, args[1]); __HAL_TIM_SET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self), cmp & TIMER_CNT_MASK(self->timer)); return mp_const_none; } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_pulse_width_percent_obj, 1, 2, pyb_timer_channel_pulse_width_percent); /// \method callback(fun) /// Set the function to be called when the timer channel triggers. /// `fun` is passed 1 argument, the timer object. /// If `fun` is `None` then the callback will be disabled. STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback) { pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(self_in); if (callback == mp_const_none) { // stop interrupt (but not timer) __HAL_TIM_DISABLE_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel)); self->callback = mp_const_none; } else if (mp_obj_is_callable(callback)) { self->callback = callback; __HAL_TIM_CLEAR_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel)); #if defined(TIM1) if (self->timer->tim_id == 1) { HAL_NVIC_EnableIRQ(TIM1_CC_IRQn); } else #endif #if defined(TIM8) // STM32F401 doesn't have a TIM8 if (self->timer->tim_id == 8) { HAL_NVIC_EnableIRQ(TIM8_CC_IRQn); } else #endif { HAL_NVIC_EnableIRQ(self->timer->irqn); } // start timer, so that it interrupts on overflow switch (self->mode) { case CHANNEL_MODE_PWM_NORMAL: case CHANNEL_MODE_PWM_INVERTED: HAL_TIM_PWM_Stop_IT(&self->timer->tim, TIMER_CHANNEL(self)); HAL_TIM_PWM_Start_IT(&self->timer->tim, TIMER_CHANNEL(self)); break; case CHANNEL_MODE_OC_TIMING: case CHANNEL_MODE_OC_ACTIVE: case CHANNEL_MODE_OC_INACTIVE: case CHANNEL_MODE_OC_TOGGLE: case CHANNEL_MODE_OC_FORCED_ACTIVE: case CHANNEL_MODE_OC_FORCED_INACTIVE: HAL_TIM_OC_Stop_IT(&self->timer->tim, TIMER_CHANNEL(self)); HAL_TIM_OC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self)); break; case CHANNEL_MODE_IC: HAL_TIM_IC_Stop_IT(&self->timer->tim, TIMER_CHANNEL(self)); HAL_TIM_IC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self)); break; } } else { mp_raise_ValueError(MP_ERROR_TEXT("callback must be None or a callable object")); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_channel_callback_obj, pyb_timer_channel_callback); STATIC const mp_rom_map_elem_t pyb_timer_channel_locals_dict_table[] = { // instance methods { MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&pyb_timer_channel_callback_obj) }, { MP_ROM_QSTR(MP_QSTR_pulse_width), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) }, { MP_ROM_QSTR(MP_QSTR_pulse_width_percent), MP_ROM_PTR(&pyb_timer_channel_pulse_width_percent_obj) }, { MP_ROM_QSTR(MP_QSTR_capture), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) }, { MP_ROM_QSTR(MP_QSTR_compare), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table); STATIC MP_DEFINE_CONST_OBJ_TYPE( pyb_timer_channel_type, MP_QSTR_TimerChannel, MP_TYPE_FLAG_NONE, print, pyb_timer_channel_print, locals_dict, &pyb_timer_channel_locals_dict ); STATIC void timer_handle_irq_channel(pyb_timer_obj_t *tim, uint8_t channel, mp_obj_t callback) { uint32_t irq_mask = TIMER_IRQ_MASK(channel); if (__HAL_TIM_GET_FLAG(&tim->tim, irq_mask) != RESET) { if (__HAL_TIM_GET_IT_SOURCE(&tim->tim, irq_mask) != RESET) { // clear the interrupt __HAL_TIM_CLEAR_IT(&tim->tim, irq_mask); // execute callback if it's set if (callback != mp_const_none) { mp_sched_lock(); // When executing code within a handler we must lock the GC to prevent // any memory allocations. We must also catch any exceptions. gc_lock(); nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_call_function_1(callback, MP_OBJ_FROM_PTR(tim)); nlr_pop(); } else { // Uncaught exception; disable the callback so it doesn't run again. tim->callback = mp_const_none; __HAL_TIM_DISABLE_IT(&tim->tim, irq_mask); if (channel == 0) { mp_printf(MICROPY_ERROR_PRINTER, "uncaught exception in Timer(%u) interrupt handler\n", tim->tim_id); } else { mp_printf(MICROPY_ERROR_PRINTER, "uncaught exception in Timer(%u) channel %u interrupt handler\n", tim->tim_id, channel); } mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val)); } gc_unlock(); mp_sched_unlock(); } } } } void timer_irq_handler(uint tim_id) { if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) { // get the timer object pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1]; if (tim == NULL) { // Timer object has not been set, so we can't do anything. // This can happen under normal circumstances for timers like // 1 & 10 which use the same IRQ. return; } // Check for timer (versus timer channel) interrupt. timer_handle_irq_channel(tim, 0, tim->callback); uint32_t handled = TIMER_IRQ_MASK(0); // Check to see if a timer channel interrupt was pending pyb_timer_channel_obj_t *chan = tim->channel; while (chan != NULL) { timer_handle_irq_channel(tim, chan->channel, chan->callback); handled |= TIMER_IRQ_MASK(chan->channel); chan = chan->next; } // Finally, clear any remaining interrupt sources. Otherwise we'll // just get called continuously. uint32_t unhandled = tim->tim.Instance->DIER & 0xff & ~handled; if (unhandled != 0) { __HAL_TIM_DISABLE_IT(&tim->tim, unhandled); __HAL_TIM_CLEAR_IT(&tim->tim, unhandled); mp_printf(MICROPY_ERROR_PRINTER, "unhandled interrupt SR=0x%02x (now disabled)\n", (unsigned int)unhandled); } } } MP_REGISTER_ROOT_POINTER(struct _pyb_timer_obj_t *pyb_timer_obj_all[MICROPY_HW_MAX_TIMER]);