/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016-2017 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "extmod/vfs.h" #include "extmod/vfs_fat.h" #include "genhdr/mpversion.h" #include "py/nlr.h" #include "py/compile.h" #include "py/frozenmod.h" #include "py/mphal.h" #include "py/runtime.h" #include "py/repl.h" #include "py/gc.h" #include "py/stackctrl.h" #include "lib/mp-readline/readline.h" #include "lib/utils/pyexec.h" #include "mpconfigboard.h" #include "supervisor/cpu.h" #include "supervisor/memory.h" #include "supervisor/port.h" #include "supervisor/filesystem.h" #include "supervisor/shared/autoreload.h" #include "supervisor/shared/translate.h" #include "supervisor/shared/rgb_led_status.h" #include "supervisor/shared/stack.h" #include "supervisor/serial.h" void do_str(const char *src, mp_parse_input_kind_t input_kind) { mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0); if (lex == NULL) { //printf("MemoryError: lexer could not allocate memory\n"); return; } nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { qstr source_name = lex->source_name; mp_parse_tree_t parse_tree = mp_parse(lex, input_kind); mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true); mp_call_function_0(module_fun); nlr_pop(); } else { // uncaught exception mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val); } } void start_mp(supervisor_allocation* heap) { reset_status_led(); autoreload_stop(); // Stack limit should be less than real stack size, so we have a chance // to recover from limit hit. (Limit is measured in bytes.) mp_stack_ctrl_init(); mp_stack_set_limit(stack_alloc->length - 1024); #if MICROPY_MAX_STACK_USAGE // _ezero (same as _ebss) is an int, so start 4 bytes above it. mp_stack_set_bottom(stack_alloc->ptr); mp_stack_fill_with_sentinel(); #endif // Sync the file systems in case any used RAM from the GC to cache. As soon // as we re-init the GC all bets are off on the cache. filesystem_flush(); // Clear the readline history. It references the heap we're about to destroy. readline_init0(); #if MICROPY_ENABLE_GC gc_init(heap->ptr, heap->ptr + heap->length / 4); #endif mp_init(); mp_obj_list_init(mp_sys_path, 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib)); // Frozen modules are in their own pseudo-dir, e.g., ".frozen". mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_FROZEN_FAKE_DIR_QSTR)); mp_obj_list_init(mp_sys_argv, 0); } void stop_mp(void) { } #define STRING_LIST(...) {__VA_ARGS__, ""} // Look for the first file that exists in the list of filenames, using mp_import_stat(). // Return its index. If no file found, return -1. const char* first_existing_file_in_list(const char ** filenames) { for (int i = 0; filenames[i] != (char*)""; i++) { mp_import_stat_t stat = mp_import_stat(filenames[i]); if (stat == MP_IMPORT_STAT_FILE) { return filenames[i]; } } return NULL; } bool maybe_run_list(const char ** filenames, pyexec_result_t* exec_result) { const char* filename = first_existing_file_in_list(filenames); if (filename == NULL) { return false; } mp_hal_stdout_tx_str(filename); mp_hal_stdout_tx_str(translate(" output:\n")); pyexec_file(filename, exec_result); return true; } bool run_code_py(safe_mode_t safe_mode) { bool serial_connected_at_start = serial_connected(); #ifdef CIRCUITPY_AUTORELOAD_DELAY_MS if (serial_connected_at_start) { serial_write("\n"); if (autoreload_is_enabled()) { serial_write(translate("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n")); } else if (safe_mode != NO_SAFE_MODE) { serial_write(translate("Running in safe mode! Auto-reload is off.\n")); } else if (!autoreload_is_enabled()) { serial_write(translate("Auto-reload is off.\n")); } } #endif pyexec_result_t result; result.return_code = 0; result.exception_type = NULL; result.exception_line = 0; bool found_main = false; if (safe_mode != NO_SAFE_MODE) { serial_write(translate("Running in safe mode! Not running saved code.\n")); } else { new_status_color(MAIN_RUNNING); const char *supported_filenames[] = STRING_LIST("code.txt", "code.py", "main.py", "main.txt"); const char *double_extension_filenames[] = STRING_LIST("code.txt.py", "code.py.txt", "code.txt.txt","code.py.py", "main.txt.py", "main.py.txt", "main.txt.txt","main.py.py"); stack_resize(); filesystem_flush(); supervisor_allocation* heap = allocate_remaining_memory(); start_mp(heap); found_main = maybe_run_list(supported_filenames, &result); if (!found_main){ found_main = maybe_run_list(double_extension_filenames, &result); if (found_main) { serial_write(translate("WARNING: Your code filename has two extensions\n")); } } stop_mp(); free_memory(heap); reset_port(); reset_board(); reset_status_led(); if (result.return_code & PYEXEC_FORCED_EXIT) { return reload_requested; } } // Wait for connection or character. bool serial_connected_before_animation = false; rgb_status_animation_t animation; prep_rgb_status_animation(&result, found_main, safe_mode, &animation); while (true) { #ifdef MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_LOOP #endif if (reload_requested) { return true; } if (serial_connected() && serial_bytes_available()) { // Skip REPL if reload was requested. return (serial_read() == CHAR_CTRL_D); } if (!serial_connected_before_animation && serial_connected()) { if (serial_connected_at_start) { serial_write("\n\n"); } if (!serial_connected_at_start) { if (autoreload_is_enabled()) { serial_write(translate("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n")); } else { serial_write(translate("Auto-reload is off.\n")); } } // Output a user safe mode string if its set. #ifdef BOARD_USER_SAFE_MODE if (safe_mode == USER_SAFE_MODE) { serial_write("\n"); serial_write(translate("You requested starting safe mode by ")); serial_write(BOARD_USER_SAFE_MODE_ACTION); serial_write("\n"); serial_write(translate("To exit, please reset the board without ")); serial_write(BOARD_USER_SAFE_MODE_ACTION); serial_write("\n"); } else #endif if (safe_mode != NO_SAFE_MODE) { serial_write("\n"); serial_write(translate("You are running in safe mode which means something really bad happened.\n")); if (safe_mode == HARD_CRASH) { serial_write(translate("Looks like our core CircuitPython code crashed hard. Whoops!\n")); serial_write(translate("Please file an issue here with the contents of your CIRCUITPY drive:\n")); serial_write("https://github.com/adafruit/circuitpython/issues\n"); } else if (safe_mode == BROWNOUT) { serial_write(translate("The microcontroller's power dipped. Please make sure your power supply provides\n")); serial_write(translate("enough power for the whole circuit and press reset (after ejecting CIRCUITPY).\n")); } } serial_write("\n"); serial_write(translate("Press any key to enter the REPL. Use CTRL-D to reload.")); } if (serial_connected_before_animation && !serial_connected()) { serial_connected_at_start = false; } serial_connected_before_animation = serial_connected(); tick_rgb_status_animation(&animation); } } void __attribute__ ((noinline)) run_boot_py(safe_mode_t safe_mode) { // If not in safe mode, run boot before initing USB and capture output in a // file. if (filesystem_present() && safe_mode == NO_SAFE_MODE && MP_STATE_VM(vfs_mount_table) != NULL) { static const char *boot_py_filenames[] = STRING_LIST("settings.txt", "settings.py", "boot.py", "boot.txt"); new_status_color(BOOT_RUNNING); #ifdef CIRCUITPY_BOOT_OUTPUT_FILE FIL file_pointer; boot_output_file = &file_pointer; // Get the base filesystem. FATFS *fs = &((fs_user_mount_t *) MP_STATE_VM(vfs_mount_table)->obj)->fatfs; bool have_boot_py = first_existing_file_in_list(boot_py_filenames) != NULL; bool skip_boot_output = false; // If there's no boot.py file that might write some changing output, // read the existing copy of CIRCUITPY_BOOT_OUTPUT_FILE and see if its contents // match the version info we would print anyway. If so, skip writing CIRCUITPY_BOOT_OUTPUT_FILE. // This saves wear and tear on the flash and also prevents filesystem damage if power is lost // during the write, which may happen due to bobbling the power connector or weak power. static const size_t NUM_CHARS_TO_COMPARE = 160; if (!have_boot_py && f_open(fs, boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_READ) == FR_OK) { char file_contents[NUM_CHARS_TO_COMPARE]; UINT chars_read = 0; f_read(boot_output_file, file_contents, NUM_CHARS_TO_COMPARE, &chars_read); f_close(boot_output_file); skip_boot_output = // + 2 accounts for \r\n. chars_read == strlen(MICROPY_FULL_VERSION_INFO) + 2 && strncmp(file_contents, MICROPY_FULL_VERSION_INFO, strlen(MICROPY_FULL_VERSION_INFO)) == 0; } if (!skip_boot_output) { // Wait 1.5 seconds before opening CIRCUITPY_BOOT_OUTPUT_FILE for write, // in case power is momentary or will fail shortly due to, say a low, battery. mp_hal_delay_ms(1500); // USB isn't up, so we can write the file. filesystem_writable_by_python(true); f_open(fs, boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS); // Switch the filesystem back to non-writable by Python now instead of later, // since boot.py might change it back to writable. filesystem_writable_by_python(false); // Write version info to boot_out.txt. mp_hal_stdout_tx_str(MICROPY_FULL_VERSION_INFO); mp_hal_stdout_tx_str("\r\n"); } #endif stack_init(); // TODO(tannewt): Allocate temporary space to hold custom usb descriptors. filesystem_flush(); supervisor_allocation* heap = allocate_remaining_memory(); start_mp(heap); // TODO(tannewt): Re-add support for flashing boot error output. bool found_boot = maybe_run_list(boot_py_filenames, NULL); (void) found_boot; #ifdef CIRCUITPY_BOOT_OUTPUT_FILE if (!skip_boot_output) { f_close(boot_output_file); filesystem_flush(); } boot_output_file = NULL; #endif // Reset to remove any state that boot.py setup. It should only be used to // change internal state that's not in the heap. reset_port(); reset_board(); stop_mp(); free_memory(heap); } } int run_repl(void) { int exit_code = PYEXEC_FORCED_EXIT; stack_resize(); filesystem_flush(); supervisor_allocation* heap = allocate_remaining_memory(); start_mp(heap); autoreload_suspend(); new_status_color(REPL_RUNNING); if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { exit_code = pyexec_raw_repl(); } else { exit_code = pyexec_friendly_repl(); } reset_port(); reset_board(); stop_mp(); free_memory(heap); autoreload_resume(); return exit_code; } int __attribute__((used)) main(void) { memory_init(); // initialise the cpu and peripherals safe_mode_t safe_mode = port_init(); rgb_led_status_init(); // Create a new filesystem only if we're not in a safe mode. // A power brownout here could make it appear as if there's // no SPI flash filesystem, and we might erase the existing one. filesystem_init(safe_mode == NO_SAFE_MODE, false); // Reset everything and prep MicroPython to run boot.py. reset_port(); reset_board(); // Turn on autoreload by default but before boot.py in case it wants to change it. autoreload_enable(); // By default our internal flash is readonly to local python code and // writable over USB. Set it here so that boot.py can change it. filesystem_writable_by_python(false); run_boot_py(safe_mode); // Start serial and HID after giving boot.py a chance to tweak behavior. serial_init(); // Boot script is finished, so now go into REPL/main mode. int exit_code = PYEXEC_FORCED_EXIT; bool skip_repl = true; bool first_run = true; for (;;) { if (!skip_repl) { exit_code = run_repl(); } if (exit_code == PYEXEC_FORCED_EXIT) { if (!first_run) { serial_write(translate("soft reboot\n")); } first_run = false; skip_repl = run_code_py(safe_mode); } else if (exit_code != 0) { break; } } mp_deinit(); return 0; } void gc_collect(void) { gc_collect_start(); mp_uint_t regs[10]; mp_uint_t sp = cpu_get_regs_and_sp(regs); // This collects root pointers from the VFS mount table. Some of them may // have lost their references in the VM even though they are mounted. gc_collect_root((void**)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t)); // This naively collects all object references from an approximate stack // range. gc_collect_root((void**)sp, ((uint32_t)&_estack - sp) / sizeof(uint32_t)); gc_collect_end(); } void NORETURN nlr_jump_fail(void *val) { HardFault_Handler(); while (true) {} } void NORETURN __fatal_error(const char *msg) { HardFault_Handler(); while (true) {} } #ifndef NDEBUG void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) { printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line); __fatal_error("Assertion failed"); } #endif