/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020-2021 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "py/mphal.h" #include "modmachine.h" #include "hardware/clocks.h" #include "hardware/pwm.h" /******************************************************************************/ // MicroPython bindings for machine.PWM typedef struct _machine_pwm_obj_t { mp_obj_base_t base; uint8_t slice; uint8_t channel; } machine_pwm_obj_t; STATIC machine_pwm_obj_t machine_pwm_obj[] = { {{&machine_pwm_type}, 0, PWM_CHAN_A}, {{&machine_pwm_type}, 0, PWM_CHAN_B}, {{&machine_pwm_type}, 1, PWM_CHAN_A}, {{&machine_pwm_type}, 1, PWM_CHAN_B}, {{&machine_pwm_type}, 2, PWM_CHAN_A}, {{&machine_pwm_type}, 2, PWM_CHAN_B}, {{&machine_pwm_type}, 3, PWM_CHAN_A}, {{&machine_pwm_type}, 3, PWM_CHAN_B}, {{&machine_pwm_type}, 4, PWM_CHAN_A}, {{&machine_pwm_type}, 4, PWM_CHAN_B}, {{&machine_pwm_type}, 5, PWM_CHAN_A}, {{&machine_pwm_type}, 5, PWM_CHAN_B}, {{&machine_pwm_type}, 6, PWM_CHAN_A}, {{&machine_pwm_type}, 6, PWM_CHAN_B}, {{&machine_pwm_type}, 7, PWM_CHAN_A}, {{&machine_pwm_type}, 7, PWM_CHAN_B}, }; STATIC void mp_machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "", self->slice, self->channel); } // PWM(pin) STATIC mp_obj_t mp_machine_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { // Check number of arguments mp_arg_check_num(n_args, n_kw, 1, 1, false); // Get GPIO to connect to PWM. uint32_t gpio = mp_hal_get_pin_obj(all_args[0]); // Get static peripheral object. uint slice = pwm_gpio_to_slice_num(gpio); uint8_t channel = pwm_gpio_to_channel(gpio); const machine_pwm_obj_t *self = &machine_pwm_obj[slice * 2 + channel]; // Select PWM function for given GPIO. gpio_set_function(gpio, GPIO_FUNC_PWM); return MP_OBJ_FROM_PTR(self); } STATIC void mp_machine_pwm_deinit(machine_pwm_obj_t *self) { pwm_set_enabled(self->slice, false); } STATIC mp_obj_t mp_machine_pwm_freq_get(machine_pwm_obj_t *self) { uint32_t source_hz = clock_get_hz(clk_sys); uint32_t div16 = pwm_hw->slice[self->slice].div; uint32_t top = pwm_hw->slice[self->slice].top; uint32_t pwm_freq = 16 * source_hz / div16 / (top + 1); return MP_OBJ_NEW_SMALL_INT(pwm_freq); } STATIC void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq) { // Set the frequency, making "top" as large as possible for maximum resolution. // Maximum "top" is set at 65534 to be able to achieve 100% duty with 65535. #define TOP_MAX 65534 uint32_t source_hz = clock_get_hz(clk_sys); uint32_t div16_top = 16 * source_hz / freq; uint32_t top = 1; for (;;) { // Try a few small prime factors to get close to the desired frequency. if (div16_top >= 16 * 5 && div16_top % 5 == 0 && top * 5 <= TOP_MAX) { div16_top /= 5; top *= 5; } else if (div16_top >= 16 * 3 && div16_top % 3 == 0 && top * 3 <= TOP_MAX) { div16_top /= 3; top *= 3; } else if (div16_top >= 16 * 2 && top * 2 <= TOP_MAX) { div16_top /= 2; top *= 2; } else { break; } } if (div16_top < 16) { mp_raise_ValueError(MP_ERROR_TEXT("freq too large")); } else if (div16_top >= 256 * 16) { mp_raise_ValueError(MP_ERROR_TEXT("freq too small")); } pwm_hw->slice[self->slice].div = div16_top; pwm_hw->slice[self->slice].top = top - 1; } STATIC mp_obj_t mp_machine_pwm_duty_get_u16(machine_pwm_obj_t *self) { uint32_t top = pwm_hw->slice[self->slice].top; uint32_t cc = pwm_hw->slice[self->slice].cc; cc = (cc >> (self->channel ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB)) & 0xffff; return MP_OBJ_NEW_SMALL_INT(cc * 65535 / (top + 1)); } STATIC void mp_machine_pwm_duty_set_u16(machine_pwm_obj_t *self, mp_int_t duty_u16) { uint32_t top = pwm_hw->slice[self->slice].top; uint32_t cc = duty_u16 * (top + 1) / 65535; pwm_set_chan_level(self->slice, self->channel, cc); pwm_set_enabled(self->slice, true); } STATIC mp_obj_t mp_machine_pwm_duty_get_ns(machine_pwm_obj_t *self) { uint32_t source_hz = clock_get_hz(clk_sys); uint32_t slice_hz = 16 * source_hz / pwm_hw->slice[self->slice].div; uint32_t cc = pwm_hw->slice[self->slice].cc; cc = (cc >> (self->channel ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB)) & 0xffff; return MP_OBJ_NEW_SMALL_INT((uint64_t)cc * 1000000000ULL / slice_hz); } STATIC void mp_machine_pwm_duty_set_ns(machine_pwm_obj_t *self, mp_int_t duty_ns) { uint32_t source_hz = clock_get_hz(clk_sys); uint32_t slice_hz = 16 * source_hz / pwm_hw->slice[self->slice].div; uint32_t cc = (uint64_t)duty_ns * slice_hz / 1000000000ULL; if (cc > 65535) { mp_raise_ValueError(MP_ERROR_TEXT("duty larger than period")); } pwm_set_chan_level(self->slice, self->channel, cc); pwm_set_enabled(self->slice, true); }