/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Scott Shawcroft * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "shared-bindings/busio/SPI.h" #include "py/mperrno.h" #include "py/runtime.h" #include "stm32f4xx_hal.h" #include "shared-bindings/microcontroller/__init__.h" #include "boards/board.h" #include "supervisor/shared/translate.h" #include "common-hal/microcontroller/Pin.h" // Note that any bugs introduced in this file can cause crashes at startup // for chips using external SPI flash. //arrays use 0 based numbering: SPI1 is stored at index 0 #define MAX_SPI 6 STATIC bool reserved_spi[MAX_SPI]; STATIC bool never_reset_spi[MAX_SPI]; #define ALL_CLOCKS 0xFF STATIC void spi_clock_enable(uint8_t mask); STATIC void spi_clock_disable(uint8_t mask); STATIC uint32_t get_busclock(SPI_TypeDef * instance) { //SPI2 and 3 are on PCLK1, if they exist. #ifdef SPI2 if (instance == SPI2) return HAL_RCC_GetPCLK1Freq(); #endif #ifdef SPI3 if (instance == SPI3) return HAL_RCC_GetPCLK1Freq(); #endif return HAL_RCC_GetPCLK2Freq(); } STATIC uint32_t stm32_baud_to_spi_div(uint32_t baudrate, uint16_t * prescaler, uint32_t busclock) { static const uint32_t baud_map[8][2] = { {2,SPI_BAUDRATEPRESCALER_2}, {4,SPI_BAUDRATEPRESCALER_4}, {8,SPI_BAUDRATEPRESCALER_8}, {16,SPI_BAUDRATEPRESCALER_16}, {32,SPI_BAUDRATEPRESCALER_32}, {64,SPI_BAUDRATEPRESCALER_64}, {128,SPI_BAUDRATEPRESCALER_128}, {256,SPI_BAUDRATEPRESCALER_256} }; size_t i = 0; uint16_t divisor; do { divisor = baud_map[i][0]; if (baudrate >= (busclock/divisor)) { *prescaler = divisor; return baud_map[i][1]; } i++; } while (divisor != 256); //only gets here if requested baud is lower than minimum *prescaler = 256; return SPI_BAUDRATEPRESCALER_256; } void spi_reset(void) { uint16_t never_reset_mask = 0x00; for (int i = 0; i < MAX_SPI; i++) { if (!never_reset_spi[i]) { reserved_spi[i] = false; } else { never_reset_mask |= 1 << i; } } spi_clock_disable(ALL_CLOCKS & ~(never_reset_mask)); } void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t * sck, const mcu_pin_obj_t * mosi, const mcu_pin_obj_t * miso) { //match pins to SPI objects SPI_TypeDef * SPIx; uint8_t sck_len = MP_ARRAY_SIZE(mcu_spi_sck_list); uint8_t mosi_len = MP_ARRAY_SIZE(mcu_spi_mosi_list); uint8_t miso_len = MP_ARRAY_SIZE(mcu_spi_miso_list); bool spi_taken = false; //SCK is not optional. MOSI and MISO are for (uint i = 0; i < sck_len; i++) { if (mcu_spi_sck_list[i].pin == sck) { //if both MOSI and MISO exist, loop search normally if ((mosi != NULL) && (miso != NULL)) { //MOSI for (uint j = 0; j < mosi_len; j++) { if (mcu_spi_mosi_list[j].pin == mosi) { //MISO for (uint k = 0; k < miso_len; k++) { if ((mcu_spi_miso_list[k].pin == miso) //everything needs the same index && (mcu_spi_sck_list[i].spi_index == mcu_spi_mosi_list[j].spi_index) && (mcu_spi_sck_list[i].spi_index == mcu_spi_miso_list[k].spi_index)) { //keep looking if the SPI is taken, edge case if (reserved_spi[mcu_spi_sck_list[i].spi_index - 1]) { spi_taken = true; continue; } //store pins if not self->sck = &mcu_spi_sck_list[i]; self->mosi = &mcu_spi_mosi_list[j]; self->miso = &mcu_spi_miso_list[k]; break; } } } } // if just MISO, reduce search } else if (miso != NULL) { for (uint j = 0; j < miso_len; j++) { if ((mcu_spi_miso_list[j].pin == miso) //only SCK and MISO need the same index && (mcu_spi_sck_list[i].spi_index == mcu_spi_miso_list[j].spi_index)) { //keep looking if the SPI is taken, edge case if (reserved_spi[mcu_spi_sck_list[i].spi_index - 1]) { spi_taken = true; continue; } //store pins if not self->sck = &mcu_spi_sck_list[i]; self->mosi = NULL; self->miso = &mcu_spi_miso_list[j]; break; } } // if just MOSI, reduce search } else if (mosi != NULL) { for (uint j = 0; j < mosi_len; j++) { if ((mcu_spi_mosi_list[j].pin == mosi) //only SCK and MOSI need the same index && (mcu_spi_sck_list[i].spi_index == mcu_spi_mosi_list[j].spi_index)) { //keep looking if the SPI is taken, edge case if (reserved_spi[mcu_spi_sck_list[i].spi_index - 1]) { spi_taken = true; continue; } //store pins if not self->sck = &mcu_spi_sck_list[i]; self->mosi = &mcu_spi_mosi_list[j]; self->miso = NULL; break; } } } else { //throw an error immediately mp_raise_ValueError(translate("Must provide MISO or MOSI pin")); } } } //handle typedef selection, errors if ( (self->sck != NULL && self->mosi != NULL && self->miso != NULL) || (self->sck != NULL && self->mosi != NULL && miso == NULL) || (self->sck != NULL && self->miso != NULL && mosi == NULL)) { SPIx = mcu_spi_banks[self->sck->spi_index - 1]; } else { if (spi_taken) { mp_raise_ValueError(translate("Hardware busy, try alternative pins")); } else { mp_raise_ValueError(translate("Invalid SPI pin selection")); } } //Start GPIO for each pin GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = pin_mask(sck->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = self->sck->altfn_index; HAL_GPIO_Init(pin_port(sck->port), &GPIO_InitStruct); if (self->mosi != NULL) { GPIO_InitStruct.Pin = pin_mask(mosi->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = self->mosi->altfn_index; HAL_GPIO_Init(pin_port(mosi->port), &GPIO_InitStruct); } if (self->miso != NULL) { GPIO_InitStruct.Pin = pin_mask(miso->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = self->miso->altfn_index; HAL_GPIO_Init(pin_port(miso->port), &GPIO_InitStruct); } spi_clock_enable(1 << (self->sck->spi_index - 1)); reserved_spi[self->sck->spi_index - 1] = true; self->handle.Instance = SPIx; self->handle.Init.Mode = SPI_MODE_MASTER; // Direction change only required for RX-only, see RefMan RM0090:884 self->handle.Init.Direction = (self->mosi == NULL) ? SPI_CR1_RXONLY : SPI_DIRECTION_2LINES; self->handle.Init.DataSize = SPI_DATASIZE_8BIT; self->handle.Init.CLKPolarity = SPI_POLARITY_LOW; self->handle.Init.CLKPhase = SPI_PHASE_1EDGE; self->handle.Init.NSS = SPI_NSS_SOFT; self->handle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; self->handle.Init.FirstBit = SPI_FIRSTBIT_MSB; self->handle.Init.TIMode = SPI_TIMODE_DISABLE; self->handle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; self->handle.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&self->handle) != HAL_OK) { mp_raise_ValueError(translate("SPI Init Error")); } self->baudrate = (get_busclock(SPIx) / 16); self->prescaler = 16; self->polarity = 0; self->phase = 0; self->bits = 8; claim_pin(sck); if (self->mosi != NULL) { claim_pin(mosi); } if (self->miso != NULL) { claim_pin(miso); } } void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) { for (size_t i = 0; i < MP_ARRAY_SIZE(mcu_spi_banks); i++) { if (mcu_spi_banks[i] == self->handle.Instance) { never_reset_spi[i] = true; never_reset_pin_number(self->sck->pin->port, self->sck->pin->number); if (self->mosi != NULL) { never_reset_pin_number(self->mosi->pin->port, self->mosi->pin->number); } if (self->miso != NULL) { never_reset_pin_number(self->miso->pin->port, self->miso->pin->number); } break; } } } bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) { return self->sck->pin == NULL; } void common_hal_busio_spi_deinit(busio_spi_obj_t *self) { if (common_hal_busio_spi_deinited(self)) { return; } spi_clock_disable(1<<(self->sck->spi_index - 1)); reserved_spi[self->sck->spi_index - 1] = false; never_reset_spi[self->sck->spi_index - 1] = false; reset_pin_number(self->sck->pin->port,self->sck->pin->number); if (self->mosi != NULL) { reset_pin_number(self->mosi->pin->port,self->mosi->pin->number); } if (self->miso != NULL) { reset_pin_number(self->miso->pin->port,self->miso->pin->number); } self->sck = NULL; self->mosi = NULL; self->miso = NULL; } bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) { //This resets the SPI, so check before updating it redundantly if (baudrate == self->baudrate && polarity== self->polarity && phase == self->phase && bits == self->bits) { return true; } //Deinit SPI HAL_SPI_DeInit(&self->handle); self->handle.Init.DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT; self->handle.Init.CLKPolarity = (polarity) ? SPI_POLARITY_HIGH : SPI_POLARITY_LOW; self->handle.Init.CLKPhase = (phase) ? SPI_PHASE_2EDGE : SPI_PHASE_1EDGE; self->handle.Init.BaudRatePrescaler = stm32_baud_to_spi_div(baudrate, &self->prescaler, get_busclock(self->handle.Instance)); if (HAL_SPI_Init(&self->handle) != HAL_OK) { mp_raise_ValueError(translate("SPI Re-initialization error")); } self->baudrate = baudrate; self->polarity = polarity; self->phase = phase; self->bits = bits; return true; } bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) { bool grabbed_lock = false; //Critical section code that may be required at some point. // uint32_t store_primask = __get_PRIMASK(); // __disable_irq(); // __DMB(); if (!self->has_lock) { grabbed_lock = true; self->has_lock = true; } // __DMB(); // __set_PRIMASK(store_primask); return grabbed_lock; } bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) { return self->has_lock; } void common_hal_busio_spi_unlock(busio_spi_obj_t *self) { self->has_lock = false; } bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size_t len) { if (self->mosi == NULL) { mp_raise_ValueError(translate("No MOSI Pin")); } HAL_StatusTypeDef result = HAL_SPI_Transmit (&self->handle, (uint8_t *)data, (uint16_t)len, HAL_MAX_DELAY); return result == HAL_OK; } bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len, uint8_t write_value) { if (self->miso == NULL) { mp_raise_ValueError(translate("No MISO Pin")); } HAL_StatusTypeDef result = HAL_SPI_Receive (&self->handle, data, (uint16_t)len, HAL_MAX_DELAY); return result == HAL_OK; } bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) { if (self->miso == NULL || self->mosi == NULL) { mp_raise_ValueError(translate("Missing MISO or MOSI Pin")); } HAL_StatusTypeDef result = HAL_SPI_TransmitReceive (&self->handle, data_out, data_in, (uint16_t)len,HAL_MAX_DELAY); return result == HAL_OK; } uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) { //returns actual frequency uint32_t result = HAL_RCC_GetPCLK2Freq()/self->prescaler; return result; } uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) { return self->phase; } uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) { return self->polarity; } STATIC void spi_clock_enable(uint8_t mask) { #ifdef SPI1 if (mask & (1 << 0)) { __HAL_RCC_SPI1_CLK_ENABLE(); } #endif #ifdef SPI2 if (mask & (1 << 1)) { __HAL_RCC_SPI2_CLK_ENABLE(); } #endif #ifdef SPI3 if (mask & (1 << 2)) { __HAL_RCC_SPI3_CLK_ENABLE(); } #endif #ifdef SPI4 if (mask & (1 << 3)) { __HAL_RCC_SPI4_CLK_ENABLE(); } #endif #ifdef SPI5 if (mask & (1 << 4)) { __HAL_RCC_SPI5_CLK_ENABLE(); } #endif #ifdef SPI6 if (mask & (1 << 5)) { __HAL_RCC_SPI6_CLK_ENABLE(); } #endif } STATIC void spi_clock_disable(uint8_t mask) { #ifdef SPI1 if (mask & (1 << 0)) { __HAL_RCC_SPI1_CLK_DISABLE(); __HAL_RCC_SPI1_FORCE_RESET(); __HAL_RCC_SPI1_RELEASE_RESET(); } #endif #ifdef SPI2 if (mask & (1 << 1)) { __HAL_RCC_SPI2_CLK_DISABLE(); __HAL_RCC_SPI2_FORCE_RESET(); __HAL_RCC_SPI2_RELEASE_RESET(); } #endif #ifdef SPI3 if (mask & (1 << 2)) { __HAL_RCC_SPI3_CLK_DISABLE(); __HAL_RCC_SPI3_FORCE_RESET(); __HAL_RCC_SPI3_RELEASE_RESET(); } #endif #ifdef SPI4 if (mask & (1 << 3)) { __HAL_RCC_SPI4_CLK_DISABLE(); __HAL_RCC_SPI4_FORCE_RESET(); __HAL_RCC_SPI4_RELEASE_RESET(); } #endif #ifdef SPI5 if (mask & (1 << 4)) { __HAL_RCC_SPI5_CLK_DISABLE(); __HAL_RCC_SPI5_FORCE_RESET(); __HAL_RCC_SPI5_RELEASE_RESET(); } #endif #ifdef SPI6 if (mask & (1 << 5)) { __HAL_RCC_SPI6_CLK_DISABLE(); __HAL_RCC_SPI6_FORCE_RESET(); __HAL_RCC_SPI6_RELEASE_RESET(); } #endif }