/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2015 Daniel Campora * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/mpstate.h" #include MICROPY_HAL_H #include "py/runtime.h" #include "bufhelper.h" #include "inc/hw_types.h" #include "inc/hw_mcspi.h" #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "rom_map.h" #include "pin.h" #include "prcm.h" #include "spi.h" #include "pybspi.h" #include "mpexception.h" #include "pybsleep.h" /// \moduleref pyb /// \class SPI - a master-driven serial protocol /// /// SPI is a serial protocol that is driven by a master. At the physical level /// there are 3 lines: SCK, MOSI, MISO. /// /// See usage model of I2C; SPI is very similar. Main difference is /// parameters to init the SPI bus: /// /// from pyb import SPI /// spi = SPI(0, SPI.MASTER, baudrate=2000000, bits=8, submode=0, cs=SPI.ACTIVE_LOW) /// /// Only required parameter is mode, which must be SPI.MASTER. Submode may be 0-3. /// Bit accepts 8, 16, 32. Chip select values are ACTIVE_LOW, ACTIVE_HIGH or NONE /// /// Additional method for SPI: /// /// data = spi.send_recv(b'1234') # send 4 bytes and receive 4 bytes /// buf = bytearray(4) /// spi.send_recv(b'1234', buf) # send 4 bytes and receive 4 into buf /// spi.send_recv(buf, buf) # send/recv 4 bytes from/to buf /****************************************************************************** DEFINE TYPES ******************************************************************************/ typedef struct _pyb_spi_obj_t { mp_obj_base_t base; uint baudrate; uint config; vstr_t tx_vstr; vstr_t rx_vstr; uint tx_index; uint rx_index; byte submode; byte wlen; } pyb_spi_obj_t; /****************************************************************************** DEFINE CONSTANTS ******************************************************************************/ #define PYBSPI_DEF_BAUDRATE 1000000 // 1MHz #define PYBSPI_CS_NONE 0xFF // spi cs is controlled by the user /****************************************************************************** DECLARE PRIVATE DATA ******************************************************************************/ STATIC pyb_spi_obj_t pyb_spi_obj = {.baudrate = 0}; /****************************************************************************** DEFINE PRIVATE FUNCTIONS ******************************************************************************/ // only master mode is available for the moment STATIC void pybspi_init (const pyb_spi_obj_t *self) { // enable the peripheral clock MAP_PRCMPeripheralClkEnable(PRCM_GSPI, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK); MAP_PRCMPeripheralReset(PRCM_GSPI); MAP_SPIReset(GSPI_BASE); // configure the interface (only master mode supported) MAP_SPIConfigSetExpClk (GSPI_BASE, MAP_PRCMPeripheralClockGet(PRCM_GSPI), self->baudrate, SPI_MODE_MASTER, self->submode, self->config); // enable the interface MAP_SPIEnable(GSPI_BASE); } STATIC void pybspi_deinit(void) { MAP_SPIDisable(GSPI_BASE); MAP_PRCMPeripheralClkDisable(PRCM_GSPI, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK); // invalidate the baudrate pyb_spi_obj.baudrate = 0; } STATIC void pybspi_tx (pyb_spi_obj_t *self, const void *data) { uint32_t txdata = 0xFFFFFFFF; if (data) { switch (self->wlen) { case 1: txdata = (uint8_t)(*(char *)data); break; case 2: txdata = (uint16_t)(*(uint16_t *)data); break; case 4: txdata = (uint32_t)(*(uint32_t *)data); break; default: return; } } MAP_SPIDataPut (GSPI_BASE, txdata); } STATIC void pybspi_rx (pyb_spi_obj_t *self, void *data) { uint32_t rxdata; MAP_SPIDataGet (GSPI_BASE, &rxdata); if (data) { switch (self->wlen) { case 1: *(char *)data = rxdata; break; case 2: *(uint16_t *)data = rxdata; break; case 4: *(uint32_t *)data = rxdata; break; default: return; } } } STATIC void pybspi_transfer (pyb_spi_obj_t *self, const char *txdata, char *rxdata, uint32_t len) { // send and receive the data MAP_SPICSEnable(GSPI_BASE); for (int i = 0; i < len / self->wlen; i += self->wlen) { pybspi_tx(self, txdata ? (const void *)&txdata[i] : NULL); pybspi_rx(self, rxdata ? (void *)&rxdata[i] : NULL); } MAP_SPICSDisable(GSPI_BASE); } /******************************************************************************/ /* Micro Python bindings */ /******************************************************************************/ STATIC void pyb_spi_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { pyb_spi_obj_t *self = self_in; if (self->baudrate > 0) { print(env, "baudrate, self->config, self->submode, (self->wlen * 8)); } else { print(env, ""); } } /// \method init(mode, baudrate=2000000, *, bits=8, submode=0, cs=SPI.ACTIVELOW) /// /// Initialise the SPI bus with the given parameters: /// /// - `mode` must be `SPI.MASTER`. /// - `baudrate` is the SCK clock rate. /// - `bits` is the transfer width size (8, 16, 32). /// - `submode` is the spi mode (0, 1, 2, 3). /// - `cs` can be ACTIVELOW, ACTIVEHIGH, or NONE static const mp_arg_t pybspi_init_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = SPI_MODE_MASTER} }, { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = PYBSPI_DEF_BAUDRATE} }, { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_submode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_cs, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_CS_ACTIVELOW} }, }; STATIC mp_obj_t pyb_spi_init_helper(pyb_spi_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // parse args mp_arg_val_t args[MP_ARRAY_SIZE(pybspi_init_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(pybspi_init_args), pybspi_init_args, args); uint submode = args[3].u_int; uint cs = args[4].u_int; uint bits; // save the word length for later use self->wlen = args[2].u_int / 8; switch (args[2].u_int) { case 8: bits = SPI_WL_8; break; case 16: bits = SPI_WL_16; break; case 32: bits = SPI_WL_32; break; default: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); break; } if (submode < SPI_SUB_MODE_0 || submode > SPI_SUB_MODE_3) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } if (cs != SPI_CS_ACTIVELOW && cs != SPI_CS_ACTIVEHIGH && cs != PYBSPI_CS_NONE) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } // build the configuration self->baudrate = args[1].u_int; self->config = bits | cs | SPI_SW_CTRL_CS | SPI_4PIN_MODE | SPI_TURBO_OFF; self->submode = submode; // init the bus pybspi_init((const pyb_spi_obj_t *)self); // register it with the sleep module pybsleep_add((const mp_obj_t)self, (WakeUpCB_t)pybspi_init); return mp_const_none; } /// \classmethod \constructor(bus, ...) /// /// Construct an SPI object on the given bus. `bus` can be only 0. /// With no additional parameters, the SPI object is created but not /// initialised (it has the settings from the last initialisation of /// the bus, if any). If extra arguments are given, the bus is initialised. /// See `init` for parameters of initialisation. /// STATIC mp_obj_t pyb_spi_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); mp_int_t spi_id = mp_obj_get_int(args[0]); // check the spi bus id if (spi_id != 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } pyb_spi_obj_t *self = &pyb_spi_obj; self->base.type = &pyb_spi_type; if (n_args > 1 || n_kw > 0) { // start the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_spi_init_helper(self, n_args - 1, args + 1, &kw_args); } return self; } STATIC mp_obj_t pyb_spi_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pyb_spi_init_helper(args[0], n_args - 1, args + 1, kw_args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init); /// \method deinit() /// Turn off the spi bus. STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) { pybspi_deinit(); // unregister it with the sleep module pybsleep_remove((const mp_obj_t)self_in); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit); /// \method send(send) /// Send data on the bus: /// /// - `send` is the data to send (a byte to send, or a buffer object). /// STATIC mp_obj_t pyb_spi_send (mp_obj_t self_in, mp_obj_t send_o) { pyb_spi_obj_t *self = self_in; // get the buffer to send from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(send_o, &bufinfo, data); // just send pybspi_transfer(self, (const char *)bufinfo.buf, NULL, bufinfo.len); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_spi_send_obj, pyb_spi_send); /// \method recv(recv) /// /// Receive data on the bus: /// /// - `recv` can be an integer, which is the number of bytes to receive, /// or a mutable buffer, which will be filled with received bytes. /// /// Return: if `recv` is an integer then a new buffer of the bytes received, /// otherwise the same buffer that was passed in to `recv`. STATIC mp_obj_t pyb_spi_recv(mp_obj_t self_in, mp_obj_t recv_o) { pyb_spi_obj_t *self = self_in; // get the buffer to receive into vstr_t vstr; mp_obj_t o_ret = pyb_buf_get_for_recv(recv_o, &vstr); // just receive pybspi_transfer(self, NULL, vstr.buf, vstr.len); // return the received data if (o_ret != MP_OBJ_NULL) { return o_ret; } else { return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_spi_recv_obj, pyb_spi_recv); /// \method send_recv(send, recv) /// /// Send and receive data on the bus at the same time: /// /// - `send` is the data to send (an integer to send, or a buffer object). /// - `recv` is a mutable buffer which will be filled with received bytes. /// It can be the same as `send`, or omitted. If omitted, a new buffer will /// be created. /// /// Return: the buffer with the received bytes. STATIC mp_obj_t pyb_spi_send_recv (mp_uint_t n_args, const mp_obj_t *args) { pyb_spi_obj_t *self = args[0]; // get buffers to send from/receive to mp_buffer_info_t bufinfo_send; uint8_t data_send[1]; mp_buffer_info_t bufinfo_recv; vstr_t vstr_recv; mp_obj_t o_ret; if (args[1] == args[2]) { // same object for sending and receiving, it must be a r/w buffer mp_get_buffer_raise(args[1], &bufinfo_send, MP_BUFFER_RW); bufinfo_recv = bufinfo_send; o_ret = args[1]; } else { // get the buffer to send from pyb_buf_get_for_send(args[1], &bufinfo_send, data_send); // get the buffer to receive into if (n_args == 2) { // only the send was argument given, so create a fresh buffer of the send length vstr_init_len(&vstr_recv, bufinfo_send.len); bufinfo_recv.len = vstr_recv.len; bufinfo_recv.buf = vstr_recv.buf; o_ret = MP_OBJ_NULL; } else { // recv argument given mp_get_buffer_raise(args[2], &bufinfo_recv, MP_BUFFER_WRITE); if (bufinfo_recv.len != bufinfo_send.len) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, mpexception_value_invalid_arguments)); } o_ret = args[2]; } } // send and receive pybspi_transfer(self, (const char *)bufinfo_send.buf, vstr_recv.buf, bufinfo_send.len); // return the received data if (o_ret != MP_OBJ_NULL) { return o_ret; } else { return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr_recv); } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_spi_send_recv_obj, 2, 3, pyb_spi_send_recv); STATIC const mp_map_elem_t pyb_spi_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_spi_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_spi_deinit_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_spi_send_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_spi_recv_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_send_recv), (mp_obj_t)&pyb_spi_send_recv_obj }, // class constants { MP_OBJ_NEW_QSTR(MP_QSTR_MASTER), MP_OBJ_NEW_SMALL_INT(SPI_MODE_MASTER) }, { MP_OBJ_NEW_QSTR(MP_QSTR_ACTIVE_LOW), MP_OBJ_NEW_SMALL_INT(SPI_CS_ACTIVELOW) }, { MP_OBJ_NEW_QSTR(MP_QSTR_ACTIVE_HIGH), MP_OBJ_NEW_SMALL_INT(SPI_CS_ACTIVEHIGH) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table); const mp_obj_type_t pyb_spi_type = { { &mp_type_type }, .name = MP_QSTR_SPI, .print = pyb_spi_print, .make_new = pyb_spi_make_new, .locals_dict = (mp_obj_t)&pyb_spi_locals_dict, };