/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017-2020 Nick Moore * Copyright (c) 2018 shawwwn * Copyright (c) 2020-2021 Glenn Moloney @glenn20 * Copyright (c) 2023 MicroDev * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "esp_now.h" #include "py/runtime.h" #include "py/objarray.h" #include "py/objproperty.h" #include "py/stream.h" #include "py/ringbuf.h" #include "mphalport.h" #include "bindings/espnow/__init__.h" #include "bindings/espnow/ESPNow.h" #include "shared-bindings/util.h" #include "shared-bindings/wifi/__init__.h" #define ESPNOW_MAGIC 0x99 // The maximum length of an espnow packet (bytes) #define MAX_PACKET_LEN (sizeof(espnow_packet_t) + ESP_NOW_MAX_DATA_LEN) // Enough for 2 full-size packets: 2 * (6 + 7 + 250) = 526 bytes // Will allocate an additional 7 bytes for buffer overhead #define DEFAULT_RECV_BUFFER_SIZE (2 * MAX_PACKET_LEN) // Default timeout (millisec) to wait for incoming ESPNow messages (5 minutes). #define DEFAULT_RECV_TIMEOUT_MS (5 * 60 * 1000) // Time to wait (millisec) for responses from sent packets: (2 seconds). #define DEFAULT_SEND_TIMEOUT_MS (2 * 1000) // Number of milliseconds to wait for pending responses to sent packets. // This is a fallback which should never be reached. #define PENDING_RESPONSES_TIMEOUT_MS 100 #define PENDING_RESPONSES_BUSY_POLL_MS 10 // ESPNow packet format for the receive buffer. // Use this for peeking at the header of the next packet in the buffer. typedef struct { uint8_t magic; // = ESPNOW_MAGIC uint8_t msg_len; // Length of the message uint32_t time_ms; // Timestamp (ms) when packet is received int8_t rssi; // RSSI value (dBm) (-127 to 0) } __attribute__((packed)) espnow_header_t; typedef struct { espnow_header_t header; // The header uint8_t peer[6]; // Peer address uint8_t msg[0]; // Message is up to 250 bytes } __attribute__((packed)) espnow_packet_t; // The data structure for the espnow_singleton. typedef struct _espnow_obj_t { mp_obj_base_t base; ringbuf_t *recv_buffer; // A buffer for received packets size_t recv_buffer_size; // The size of the recv_buffer wifi_phy_rate_t phy_rate; // The ESP-NOW physical layer rate. volatile size_t rx_packets; // # of received packets volatile size_t rx_failures; // # of dropped packets (buffer full) size_t tx_packets; // # of sent packets volatile size_t tx_responses; // # of sent packet responses received volatile size_t tx_failures; // # of sent packet responses failed size_t peers_count; // Cache the # of peers for send(sync=True) mp_obj_t peers_table; // A dictionary of discovered peers } espnow_obj_t; static void check_esp_err(esp_err_t status) { if (status != ESP_OK) { mp_raise_RuntimeError(translate("an error occured")); } } // --- Initialisation and Config functions --- // Return a pointer to the ESPNow module singleton static espnow_obj_t *_get_singleton(void) { return MP_STATE_PORT(espnow_singleton); } static bool espnow_deinited(espnow_obj_t *self) { return self->recv_buffer == NULL; } static void check_for_deinit(espnow_obj_t *self) { if (espnow_deinited(self)) { raise_deinited_error(); } } static void _set_buffer_size(espnow_obj_t *self, mp_int_t value) { self->recv_buffer_size = mp_arg_validate_int_min(value, MAX_PACKET_LEN, MP_QSTR_buffer_size); }; static void _set_phy_rate(espnow_obj_t *self, mp_int_t value) { self->phy_rate = mp_arg_validate_int_range(value, 0, WIFI_PHY_RATE_MAX - 1, MP_QSTR_phy_rate); }; //| class ESPNow: //| """Provides access to the ESP-NOW protocol.""" //| //| def __init__(self, buffer_size: Optional[int], phy_rate: Optional[int]) -> None: //| """Allocate and initialize `ESPNow` instance as a singleton. //| //| :param int buffer_size: The size of the internal ring buffer (length > 263 bytes). Default: 526 bytes. //| :param int phy_rate: The ESP-NOW physical layer rate. Default 1 Mbps.""" //| ... STATIC mp_obj_t espnow_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_buffer_size, ARG_phy_rate }; static const mp_arg_t allowed_args[] = { { MP_QSTR_buffer_size, MP_ARG_INT, { .u_int = DEFAULT_RECV_BUFFER_SIZE } }, { MP_QSTR_phy_rate, MP_ARG_INT, { .u_int = WIFI_PHY_RATE_1M_L } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); espnow_obj_t *self = _get_singleton(); if (self == NULL) { self = m_new_obj(espnow_obj_t); self->base.type = &espnow_type; _set_buffer_size(self, args[ARG_buffer_size].u_int); _set_phy_rate(self, args[ARG_phy_rate].u_int); self->peers_table = mp_obj_new_dict(0); // Prevent user code modifying the dict mp_obj_dict_get_map(self->peers_table)->is_fixed = 1; // Set the global singleton pointer for the espnow protocol. MP_STATE_PORT(espnow_singleton) = self; } return self; } // --- The ESP-NOW send and recv callback routines --- // Callback triggered when a sent packet is acknowledged by the peer (or not). // Just count the number of responses and number of failures. // These are used in the send() logic. static void send_cb(const uint8_t *mac, esp_now_send_status_t status) { espnow_obj_t *self = _get_singleton(); self->tx_responses++; if (status != ESP_NOW_SEND_SUCCESS) { self->tx_failures++; } } static inline int8_t _get_rssi_from_wifi_packet(const uint8_t *msg); // Callback triggered when an ESP-NOW packet is received. // Write the peer MAC address and the message into the recv_buffer as an ESPNow packet. // If the buffer is full, drop the message and increment the dropped count. static void recv_cb(const uint8_t *mac, const uint8_t *msg, int msg_len) { espnow_obj_t *self = _get_singleton(); ringbuf_t *buf = self->recv_buffer; if (sizeof(espnow_packet_t) + msg_len > ringbuf_num_empty(buf)) { self->rx_failures++; return; } espnow_header_t header; header.magic = ESPNOW_MAGIC; header.msg_len = msg_len; header.rssi = _get_rssi_from_wifi_packet(msg); header.time_ms = mp_hal_ticks_ms(); ringbuf_put_n(buf, (uint8_t *)&header, sizeof(header)); ringbuf_put_n(buf, mac, ESP_NOW_ETH_ALEN); ringbuf_put_n(buf, msg, msg_len); self->rx_packets++; } // Initialize the ESP-NOW software stack, // register callbacks and allocate the recv data buffers. static void espnow_init(espnow_obj_t *self) { if (espnow_deinited(self)) { self->recv_buffer = m_new_obj(ringbuf_t); if (!ringbuf_alloc(self->recv_buffer, self->recv_buffer_size, true)) { m_malloc_fail(self->recv_buffer_size); } if (!common_hal_wifi_radio_get_enabled(&common_hal_wifi_radio_obj)) { common_hal_wifi_init(false); common_hal_wifi_radio_set_enabled(&common_hal_wifi_radio_obj, true); } check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_STA, self->phy_rate)); check_esp_err(esp_wifi_config_espnow_rate(ESP_IF_WIFI_AP, self->phy_rate)); check_esp_err(esp_now_init()); check_esp_err(esp_now_register_send_cb(send_cb)); check_esp_err(esp_now_register_recv_cb(recv_cb)); } } // De-initialize the ESP-NOW software stack, // disable callbacks and deallocate the recv data buffers. static void espnow_deinit(espnow_obj_t *self) { if (self != NULL && !espnow_deinited(self)) { check_esp_err(esp_now_unregister_send_cb()); check_esp_err(esp_now_unregister_recv_cb()); check_esp_err(esp_now_deinit()); self->recv_buffer->buf = NULL; self->recv_buffer = NULL; self->peers_count = 0; // esp_now_deinit() removes all peers. self->tx_packets = self->tx_responses; } } void espnow_reset(void) { espnow_deinit(_get_singleton()); MP_STATE_PORT(espnow_singleton) = NULL; } // Return C pointer to byte memory string/bytes/bytearray in obj. // Raise ValueError if the length does not match expected len. static uint8_t *_get_bytes_len(mp_obj_t obj, size_t len, mp_uint_t rw) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(obj, &bufinfo, rw); mp_arg_validate_length(bufinfo.len, len, MP_QSTR_buffer); return (uint8_t *)bufinfo.buf; } //| def set_pmk(self, pmk: ReadableBuffer) -> None: //| """Set the ESP-NOW Primary Master Key (pmk) for encrypted communications. //| //| :param ReadableBuffer pmk: The ESP-NOW Primary Master Key (length = 16 bytes).""" //| ... STATIC mp_obj_t espnow_set_pmk(mp_obj_t self_in, mp_obj_t key) { check_esp_err(esp_now_set_pmk(_get_bytes_len(key, ESP_NOW_KEY_LEN, MP_BUFFER_READ))); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_pmk_obj, espnow_set_pmk); //| active: bool //| """Initialize or de-initialize the `ESPNow` communication protocol.""" //| STATIC mp_obj_t espnow_get_active(const mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return mp_obj_new_bool(!espnow_deinited(self)); } MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_active_obj, espnow_get_active); STATIC mp_obj_t espnow_set_active(const mp_obj_t self_in, const mp_obj_t value) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_obj_is_true(value) ? espnow_init(self) : espnow_deinit(self); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_active_obj, espnow_set_active); MP_PROPERTY_GETSET(espnow_active_obj, (mp_obj_t)&espnow_get_active_obj, (mp_obj_t)&espnow_set_active_obj); //| buffer_size: int //| """The size of the internal ring buffer.""" //| STATIC mp_obj_t espnow_get_buffer_size(const mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(self->recv_buffer_size); } MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_buffer_size_obj, espnow_get_buffer_size); STATIC mp_obj_t espnow_set_buffer_size(const mp_obj_t self_in, const mp_obj_t value) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); _set_buffer_size(self, mp_obj_get_int(value)); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_buffer_size_obj, espnow_set_buffer_size); MP_PROPERTY_GETSET(espnow_buffer_size_obj, (mp_obj_t)&espnow_get_buffer_size_obj, (mp_obj_t)&espnow_set_buffer_size_obj); //| phy_rate: int //| """The ESP-NOW physical layer rate.""" //| STATIC mp_obj_t espnow_get_phy_rate(const mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(self->phy_rate); } MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_phy_rate_obj, espnow_get_phy_rate); STATIC mp_obj_t espnow_set_phy_rate(const mp_obj_t self_in, const mp_obj_t value) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); _set_phy_rate(self, mp_obj_get_int(value)); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(espnow_set_phy_rate_obj, espnow_set_phy_rate); MP_PROPERTY_GETSET(espnow_phy_rate_obj, (mp_obj_t)&espnow_get_phy_rate_obj, (mp_obj_t)&espnow_set_phy_rate_obj); //| stats: Tuple[int, int, int, int, int] //| """Provide some useful stats in a `tuple` of //| (tx_packets, tx_responses, tx_failures, rx_packets, rx_failures). (read-only)""" //| STATIC mp_obj_t espnow_get_stats(mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_TUPLE( mp_obj_new_int(self->tx_packets), mp_obj_new_int(self->tx_responses), mp_obj_new_int(self->tx_failures), mp_obj_new_int(self->rx_packets), mp_obj_new_int(self->rx_failures)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_stats_obj, espnow_get_stats); MP_PROPERTY_GETTER(espnow_stats_obj, (mp_obj_t)&espnow_get_stats_obj); // --- Maintaining the peer table and reading RSSI values --- // We maintain a peers table for several reasons, to: // - support monitoring the RSSI values for all peers; and // - to return unique bytestrings for each peer which supports more efficient // application memory usage and peer handling. // Get the RSSI value from the wifi packet header static inline int8_t _get_rssi_from_wifi_packet(const uint8_t *msg) { // Warning: Secret magic to get the rssi from the wifi packet header // See espnow.c:espnow_recv_cb() at https://github.com/espressif/esp-now/ // In the wifi packet the msg comes after a wifi_promiscuous_pkt_t // and a espnow_frame_format_t. // Backtrack to get a pointer to the wifi_promiscuous_pkt_t. #define SIZEOF_ESPNOW_FRAME_FORMAT 39 #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" wifi_promiscuous_pkt_t *wifi_packet = (wifi_promiscuous_pkt_t *)( msg - SIZEOF_ESPNOW_FRAME_FORMAT - sizeof(wifi_promiscuous_pkt_t)); #pragma GCC diagnostic pop return wifi_packet->rx_ctrl.rssi; } // Lookup a peer in the peers table and return a reference to the item in the peers_table. // Add peer to the table if it is not found (may alloc memory). Will not return NULL. static mp_map_elem_t *_lookup_add_peer(espnow_obj_t *self, const uint8_t *peer) { // We do not want to allocate any new memory in the case that the peer // already exists in the peers_table (which is almost all the time). // So, we use a byte string on the stack and look that up in the dict. mp_map_t *map = mp_obj_dict_get_map(self->peers_table); mp_obj_str_t peer_obj = {{&mp_type_bytes}, 0, ESP_NOW_ETH_ALEN, peer}; mp_map_elem_t *item = mp_map_lookup(map, &peer_obj, MP_MAP_LOOKUP); if (item == NULL) { // If not found, add the peer using a new bytestring map->is_fixed = 0; // Allow to modify the dict mp_obj_t new_peer = mp_obj_new_bytes(peer, ESP_NOW_ETH_ALEN); item = mp_map_lookup(map, new_peer, MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); item->value = mp_obj_new_list(2, NULL); map->is_fixed = 1; // Relock the dict } return item; } // Update the peers table with the new rssi value from a received packet and // return a reference to the item in the peers_table. static void _update_rssi(espnow_obj_t *self, const uint8_t *peer, int8_t rssi, uint32_t time_ms) { // Lookup the peer in the device table mp_map_elem_t *item = _lookup_add_peer(self, peer); mp_obj_list_t *list = MP_OBJ_TO_PTR(item->value); list->items[0] = MP_OBJ_NEW_SMALL_INT(rssi); list->items[1] = mp_obj_new_int(time_ms); } // --- Handling espnow packets in the recv buffer --- // --- Send and Receive ESP-NOW data --- // Return C pointer to the MAC address. // Raise ValueError if mac is wrong type or is not 6 bytes long. static const uint8_t *_get_peer_addr(mp_obj_t mac) { return mp_obj_is_true(mac) ? _get_bytes_len(mac, ESP_NOW_ETH_ALEN, MP_BUFFER_READ) : NULL; } // Used by espnow_send() for sends() with sync==True. // Wait till all pending sent packet responses have been received. // ie. self->tx_responses == self->tx_packets. static void _wait_for_pending_responses(espnow_obj_t *self) { mp_uint_t t, start = mp_hal_ticks_ms(); while (self->tx_responses < self->tx_packets) { if ((t = mp_hal_ticks_ms() - start) > PENDING_RESPONSES_TIMEOUT_MS) { mp_raise_OSError(MP_ETIMEDOUT); } if (t > PENDING_RESPONSES_BUSY_POLL_MS) { // After 10ms of busy waiting give other tasks a look in. RUN_BACKGROUND_TASKS; } } } //| def send( //| self, //| message: ReadableBuffer, //| mac: Optional[ReadableBuffer], //| sync: bool = True, //| ) -> bool: //| """Send a message to the peer's mac address. Optionally wait for a response. //| //| :param ReadableBuffer message: The message to send (length <= 250 bytes). //| :param ReadableBuffer mac: The peer's address (length = 6 bytes). If `None` or any non-true value, send to all registered peers. //| :param bool sync: If `True`, wait for response from peer(s) after sending. //| //| :returns: //| `True` if sync == `False` and message sent successfully. //| `True` if sync == `True` and message is received successfully by all recipients //| `False` if sync == `True` and message is not received by at least one recipient //| //| :raises EAGAIN: if the internal espnow buffers are full.""" //| ... STATIC mp_obj_t espnow_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_message, ARG_mac, ARG_sync }; static const mp_arg_t allowed_args[] = { { MP_QSTR_message, MP_ARG_OBJ | MP_ARG_REQUIRED }, { MP_QSTR_mac, MP_ARG_OBJ, { .u_obj = mp_const_none } }, { MP_QSTR_sync, MP_ARG_BOOL, { .u_bool = mp_const_true } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); espnow_obj_t *self = pos_args[0]; check_for_deinit(self); const bool sync = mp_obj_is_true(args[ARG_sync].u_obj); if (sync) { // Flush out any pending responses. // If the last call was sync == False there may be outstanding responses // still to be received (possible many if we just had a burst of unsync send()s). // We need to wait for all pending responses if this call has sync = True. _wait_for_pending_responses(self); } const uint8_t *peer_addr = _get_peer_addr(args[ARG_mac].u_obj); // Get a pointer to the data buffer of the message mp_buffer_info_t message; mp_get_buffer_raise(args[ARG_message].u_obj, &message, MP_BUFFER_READ); // Send the packet - try, try again if internal esp-now buffers are full. esp_err_t err; size_t saved_failures = self->tx_failures; mp_uint_t start = mp_hal_ticks_ms(); while ((ESP_ERR_ESPNOW_NO_MEM == (err = esp_now_send(peer_addr, message.buf, message.len))) && (mp_hal_ticks_ms() - start) <= DEFAULT_SEND_TIMEOUT_MS) { RUN_BACKGROUND_TASKS; } check_esp_err(err); // Increment the sent packet count. // If peer_addr == NULL msg will be sent to all peers EXCEPT any broadcast or multicast addresses. self->tx_packets += ((peer_addr == NULL) ? self->peers_count : 1); if (sync) { // Wait for and tally all the expected responses from peers _wait_for_pending_responses(self); } // Return False if sync and any peers did not respond. return mp_obj_new_bool(!(sync && self->tx_failures != saved_failures)); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_send_obj, 2, espnow_send); //| def recv(self, buffers: List[WriteableBuffer]) -> int: //| """Loads mac, message, rssi and timestamp into the provided buffers. //| //| If buffers is 2 elements long, the mac and message will be //| loaded into the 1st and 2nd elements. //| If buffers is 4 elements long, the rssi and timestamp values will be //| loaded into the 3rd and 4th elements. //| //| :param List[WriteableBuffer] buffers: List of buffers to be loaded. //| //| :returns: Length of the message.""" //| ... STATIC mp_obj_t espnow_recv(mp_obj_t self_in, mp_obj_t buffers) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); mp_obj_list_t *list = MP_OBJ_TO_PTR(buffers); if (!mp_obj_is_type(list, &mp_type_list) || list->len < 2) { mp_arg_error_invalid(MP_QSTR_buffers); } mp_obj_array_t *msg = MP_OBJ_TO_PTR(list->items[1]); if (mp_obj_is_type(msg, &mp_type_bytearray)) { msg->len += msg->free; // Make all the space in msg array available msg->free = 0; } uint8_t *peer_buf = _get_bytes_len(list->items[0], ESP_NOW_ETH_ALEN, MP_BUFFER_WRITE); uint8_t *msg_buf = _get_bytes_len(msg, ESP_NOW_MAX_DATA_LEN, MP_BUFFER_WRITE); // Read the packet header from the incoming buffer espnow_header_t header; if (!ringbuf_get_n(self->recv_buffer, (uint8_t *)&header, sizeof(header))) { return MP_OBJ_NEW_SMALL_INT(0); } uint8_t msg_len = header.msg_len; // Check the message packet header format and read the message data if (header.magic != ESPNOW_MAGIC || msg_len > ESP_NOW_MAX_DATA_LEN || !ringbuf_get_n(self->recv_buffer, peer_buf, ESP_NOW_ETH_ALEN) || !ringbuf_get_n(self->recv_buffer, msg_buf, msg_len)) { mp_arg_error_invalid(MP_QSTR_buffer); } if (mp_obj_is_type(msg, &mp_type_bytearray)) { // Set the length of the message bytearray. size_t size = msg->len + msg->free; msg->len = msg_len; msg->free = size - msg_len; } // Update rssi value in the peer device table _update_rssi(self, peer_buf, header.rssi, header.time_ms); if (list->len == 4) { list->items[2] = MP_OBJ_NEW_SMALL_INT(header.rssi); list->items[3] = mp_obj_new_int(header.time_ms); } return MP_OBJ_NEW_SMALL_INT(msg_len); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_recv_obj, espnow_recv); //| any: bool //| """`True` if data is available to read from the buffers.""" //| STATIC mp_obj_t espnow_get_any(const mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return ringbuf_num_filled(self->recv_buffer) ? mp_const_true : mp_const_false; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_any_obj, espnow_get_any); MP_PROPERTY_GETTER(espnow_any_obj, (mp_obj_t)&espnow_get_any_obj); // --- Peer Management Functions --- // Common code for add_peer() and mod_peer() to process the args. static void _update_peer_info(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, bool modify) { enum { ARG_mac, ARG_lmk, ARG_channel, ARG_interface, ARG_encrypt }; static const mp_arg_t allowed_args[] = { { MP_QSTR_mac, MP_ARG_OBJ | MP_ARG_REQUIRED }, { MP_QSTR_lmk, MP_ARG_OBJ, { .u_obj = mp_const_none } }, { MP_QSTR_channel, MP_ARG_INT, { .u_obj = mp_const_none } }, { MP_QSTR_interface,MP_ARG_INT, { .u_obj = mp_const_none } }, { MP_QSTR_encrypt, MP_ARG_BOOL,{ .u_obj = mp_const_none } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); esp_now_peer_info_t peer = {0}; memcpy(peer.peer_addr, _get_peer_addr(args[ARG_mac].u_obj), ESP_NOW_ETH_ALEN); if (modify) { check_esp_err(esp_now_get_peer(peer.peer_addr, &peer)); } else { if (esp_now_is_peer_exist(peer.peer_addr)) { mp_raise_RuntimeError(translate("peer already exists")); } peer.channel = 0; peer.ifidx = WIFI_IF_STA; peer.encrypt = false; } const mp_obj_t channel = args[ARG_channel].u_obj; if (channel != mp_const_none) { peer.channel = mp_arg_validate_int_range(mp_obj_get_int(channel), 1, 14, MP_QSTR_channel); } const mp_obj_t interface = args[ARG_interface].u_obj; if (interface != mp_const_none) { peer.ifidx = (wifi_interface_t)mp_arg_validate_int_range(mp_obj_get_int(interface), 0, 1, MP_QSTR_interface); } const mp_obj_t encrypt = args[ARG_encrypt].u_obj; if (encrypt != mp_const_none) { peer.encrypt = mp_obj_is_true(encrypt); } const mp_obj_t lmk = args[ARG_lmk].u_obj; if (lmk != mp_const_none) { memcpy(peer.lmk, _get_bytes_len(lmk, ESP_NOW_KEY_LEN, MP_BUFFER_READ), ESP_NOW_KEY_LEN); } else if (peer.encrypt) { mp_raise_ValueError_varg(translate("%q is %q"), MP_QSTR_lmk, MP_QSTR_None); } check_esp_err((modify) ? esp_now_mod_peer(&peer) : esp_now_add_peer(&peer)); } // Update the cached peer count in self->peers_count; // The peers_count ignores broadcast and multicast addresses and is used for the // send() logic and is updated from add_peer(), mod_peer() and del_peer(). static void _update_peer_count(espnow_obj_t *self) { esp_now_peer_info_t peer = {0}; bool from_head = true; int count = 0; // esp_now_fetch_peer() skips over any broadcast or multicast addresses while (esp_now_fetch_peer(from_head, &peer) == ESP_OK) { from_head = false; if (++count >= ESP_NOW_MAX_TOTAL_PEER_NUM) { break; // Should not happen } } self->peers_count = count; } //| def add_peer( //| self, //| mac: ReadableBuffer, //| lmk: Optional[ReadableBuffer], //| channel: int = 0, //| interface: int = 0, //| encrypt: bool = False, //| ) -> None: //| """Add peer. //| //| :param ReadableBuffer mac: The mac address of the peer. //| :param ReadableBuffer lmk: The Local Master Key (lmk) of the peer. //| :param int channel: The peer's channel. Default: 0 ie. use the current channel. //| :param int interface: The WiFi interface to use. Default: 0 ie. STA. //| :param bool encrypt: Whether or not to use encryption.""" //| ... STATIC mp_obj_t espnow_add_peer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { espnow_obj_t *self = pos_args[0]; check_for_deinit(self); _update_peer_info(n_args, pos_args, kw_args, false); _update_peer_count(self); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_add_peer_obj, 2, espnow_add_peer); //| def mod_peer( //| self, //| mac: ReadableBuffer, //| lmk: Optional[ReadableBuffer], //| channel: int = 0, //| interface: int = 0, //| encrypt: bool = False, //| ) -> None: //| """Modify peer. //| //| :param ReadableBuffer mac: The mac address of the peer. //| :param ReadableBuffer lmk: The Local Master Key (lmk) of the peer. //| :param int channel: The peer's channel. Default: 0 ie. use the current channel. //| :param int interface: The WiFi interface to use. Default: 0 ie. STA. //| :param bool encrypt: Whether or not to use encryption.""" //| ... STATIC mp_obj_t espnow_mod_peer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { espnow_obj_t *self = pos_args[0]; check_for_deinit(self); _update_peer_info(n_args, pos_args, kw_args, true); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(espnow_mod_peer_obj, 2, espnow_mod_peer); //| def del_peer(self, mac: ReadableBuffer) -> None: //| """Delete peer. //| //| :param ReadableBuffer mac: The mac address of the peer.""" //| ... STATIC mp_obj_t espnow_del_peer(mp_obj_t self_in, mp_obj_t mac) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); uint8_t peer_addr[ESP_NOW_ETH_ALEN]; memcpy(peer_addr, _get_peer_addr(mac), ESP_NOW_ETH_ALEN); check_esp_err(esp_now_del_peer(peer_addr)); _update_peer_count(self); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_del_peer_obj, espnow_del_peer); // Convert a peer_info struct to python tuple // Used by espnow_get_peer() and espnow_get_peers() static mp_obj_t _peer_info_to_tuple(const esp_now_peer_info_t *peer) { return MP_OBJ_NEW_TUPLE( mp_obj_new_bytes(peer->peer_addr, MP_ARRAY_SIZE(peer->peer_addr)), mp_obj_new_bytes(peer->lmk, MP_ARRAY_SIZE(peer->lmk)), mp_obj_new_int(peer->channel), mp_obj_new_int(peer->ifidx), mp_obj_new_bool(peer->encrypt)); } //| def get_peer(self, mac: ReadableBuffer) -> Tuple[bytes, int, int, bool]: //| """Get the peer info for mac as a `tuple`. //| //| :param ReadableBuffer mac: The mac address of the peer. //| //| :returns: A `tuple` of (mac, lmk, channel, interface, encrypt).""" //| ... STATIC mp_obj_t espnow_get_peer(mp_obj_t self_in, mp_obj_t mac) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); esp_now_peer_info_t peer = {0}; memcpy(peer.peer_addr, _get_peer_addr(mac), ESP_NOW_ETH_ALEN); check_esp_err(esp_now_get_peer(peer.peer_addr, &peer)); return _peer_info_to_tuple(&peer); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(espnow_get_peer_obj, espnow_get_peer); // --- Peer Related Properties --- //| peers: Tuple[Tuple[bytes, bytes, int, int, bool], ...] //| """The peer info records for all registered `ESPNow` peers. (read-only) //| //| A `tuple` of tuples: ((mac, lmk, channel, interface, encrypt), ...).""" //| STATIC mp_obj_t espnow_get_peers(mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); // Build and initialize the peer info tuple. mp_obj_tuple_t *peerinfo_tuple = mp_obj_new_tuple(self->peers_count, NULL); esp_now_peer_info_t peer = {0}; for (size_t i = 0; i < peerinfo_tuple->len; i++) { esp_err_t status = esp_now_fetch_peer((i == 0), &peer); peerinfo_tuple->items[i] = (status == ESP_OK ? _peer_info_to_tuple(&peer) : mp_const_none); } return peerinfo_tuple; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_obj, espnow_get_peers); MP_PROPERTY_GETTER(espnow_peers_obj, (mp_obj_t)&espnow_get_peers_obj); //| peers_count: Tuple[int, int] //| """The number of registered peers in a `tuple` of (num_total_peers, num_encrypted_peers). (read-only)""" //| STATIC mp_obj_t espnow_get_peers_count(mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); esp_now_peer_num_t peer_num = {0}; check_esp_err(esp_now_get_peer_num(&peer_num)); return MP_OBJ_NEW_TUPLE( mp_obj_new_int(peer_num.total_num), mp_obj_new_int(peer_num.encrypt_num)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_count_obj, espnow_get_peers_count); MP_PROPERTY_GETTER(espnow_peers_count_obj, (mp_obj_t)&espnow_get_peers_count_obj); //| peers_table: Dict[bytes, List[int]] //| """The dictionary of peers we have seen. (read-only) //| //| A `dict` of {peer: [rssi, time], ...} //| //| where: //| peer is a byte string containing the 6-byte mac address of the peer. //| rssi is the wifi signal strength from the last msg received (in dBm from -127 to 0). //| time is the time in milliseconds since device last booted.""" //| STATIC mp_obj_t espnow_get_peers_table(mp_obj_t self_in) { espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return self->peers_table; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(espnow_get_peers_table_obj, espnow_get_peers_table); MP_PROPERTY_GETTER(espnow_peers_table_obj, (mp_obj_t)&espnow_get_peers_table_obj); STATIC const mp_rom_map_elem_t espnow_locals_dict_table[] = { // Config parameters { MP_ROM_QSTR(MP_QSTR_set_pmk), MP_ROM_PTR(&espnow_set_pmk_obj) }, { MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&espnow_active_obj) }, { MP_ROM_QSTR(MP_QSTR_buffer_size), MP_ROM_PTR(&espnow_buffer_size_obj) }, { MP_ROM_QSTR(MP_QSTR_phy_rate), MP_ROM_PTR(&espnow_phy_rate_obj) }, { MP_ROM_QSTR(MP_QSTR_stats), MP_ROM_PTR(&espnow_stats_obj) }, // Send and receive messages { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&espnow_send_obj) }, { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&espnow_recv_obj) }, { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&espnow_any_obj) }, // Peer management functions { MP_ROM_QSTR(MP_QSTR_add_peer), MP_ROM_PTR(&espnow_add_peer_obj) }, { MP_ROM_QSTR(MP_QSTR_mod_peer), MP_ROM_PTR(&espnow_mod_peer_obj) }, { MP_ROM_QSTR(MP_QSTR_del_peer), MP_ROM_PTR(&espnow_del_peer_obj) }, { MP_ROM_QSTR(MP_QSTR_get_peer), MP_ROM_PTR(&espnow_get_peer_obj) }, // Peer related properties { MP_ROM_QSTR(MP_QSTR_peers), MP_ROM_PTR(&espnow_peers_obj) }, { MP_ROM_QSTR(MP_QSTR_peers_count), MP_ROM_PTR(&espnow_peers_count_obj) }, { MP_ROM_QSTR(MP_QSTR_peers_table), MP_ROM_PTR(&espnow_peers_table_obj) }, }; STATIC MP_DEFINE_CONST_DICT(espnow_locals_dict, espnow_locals_dict_table); // --- Dummy Buffer Protocol support --- // ...so asyncio can poll.ipoll() on this device // Support ioctl(MP_STREAM_POLL, ) for asyncio STATIC mp_uint_t espnow_stream_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { if (request != MP_STREAM_POLL) { *errcode = MP_EINVAL; return MP_STREAM_ERROR; } espnow_obj_t *self = MP_OBJ_TO_PTR(self_in); return (espnow_deinited(self)) ? 0 : // If not initialized arg ^ ( // If no data in the buffer, unset the Read ready flag ((!ringbuf_num_filled(self->recv_buffer)) ? MP_STREAM_POLL_RD : 0) | // If still waiting for responses, unset the Write ready flag ((self->tx_responses < self->tx_packets) ? MP_STREAM_POLL_WR : 0)); } STATIC const mp_stream_p_t espnow_stream_p = { .ioctl = espnow_stream_ioctl, }; const mp_obj_type_t espnow_type = { { &mp_type_type }, .name = MP_QSTR_ESPNow, .make_new = espnow_make_new, .locals_dict = (mp_obj_t)&espnow_locals_dict, .flags = MP_TYPE_FLAG_EXTENDED, MP_TYPE_EXTENDED_FIELDS( .protocol = &espnow_stream_p, ), };