/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Artyom Skrobov * Copyright (c) 2023 Jeff Epler for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-module/synthio/__init__.h" #include "py/runtime.h" STATIC const int16_t square_wave[] = {-32768, 32767}; STATIC const uint16_t notes[] = {8372, 8870, 9397, 9956, 10548, 11175, 11840, 12544, 13290, 14080, 14917, 15804}; // 9th octave int synthio_span_count_active_channels(synthio_midi_span_t *span) { int result = 0; for (int i = 0; i < CIRCUITPY_SYNTHIO_MAX_CHANNELS; i++) { if (span->note[i] != SYNTHIO_SILENCE) { result += 1; } } return result; } void synthio_synth_synthesize(synthio_synth_t *synth, uint8_t **bufptr, uint32_t *buffer_length, uint8_t channel) { if (channel == synth->other_channel) { *buffer_length = synth->last_buffer_length; *bufptr = (uint8_t *)(synth->buffers[synth->other_buffer_index] + channel); return; } synth->buffer_index = !synth->buffer_index; synth->other_channel = 1 - channel; synth->other_buffer_index = synth->buffer_index; int16_t *out_buffer = (int16_t *)(void *)synth->buffers[synth->buffer_index]; uint16_t dur = MIN(SYNTHIO_MAX_DUR, synth->span.dur); synth->span.dur -= dur; memset(out_buffer, 0, synth->buffer_length); int32_t sample_rate = synth->sample_rate; int active_channels = synthio_span_count_active_channels(&synth->span); const int16_t *waveform = synth->waveform; uint32_t waveform_length = synth->waveform_length; if (active_channels) { int16_t loudness = 0x3fff / (1 + active_channels); for (int chan = 0; chan < CIRCUITPY_SYNTHIO_MAX_CHANNELS; chan++) { if (synth->span.note[chan] == SYNTHIO_SILENCE) { synth->accum[chan] = 0; continue; } uint8_t octave = synth->span.note[chan] / 12; uint16_t base_freq = notes[synth->span.note[chan] % 12]; uint32_t accum = synth->accum[chan]; #define SHIFT (16) // rate = base_freq * waveform_length // den = sample_rate * 2 ^ (10 - octave) // den = sample_rate * 2 ^ 10 / 2^octave // dds_rate = 2^SHIFT * rate / den // dds_rate = 2^(SHIFT-10+octave) * base_freq * waveform_length / sample_rate uint32_t dds_rate = (sample_rate / 2 + ((uint64_t)(base_freq * waveform_length) << (SHIFT - 10 + octave))) / sample_rate; for (uint16_t i = 0; i < dur; i++) { accum += dds_rate; if (accum > waveform_length << SHIFT) { accum -= waveform_length << SHIFT; } int16_t idx = accum >> SHIFT; out_buffer[i] += (waveform[idx] * loudness) / 65536; } synth->accum[chan] = accum; } } *buffer_length = synth->last_buffer_length = dur * SYNTHIO_BYTES_PER_SAMPLE; *bufptr = (uint8_t *)out_buffer; } void synthio_synth_reset_buffer(synthio_synth_t *synth, bool single_channel_output, uint8_t channel) { if (single_channel_output && channel == 1) { return; } synth->other_channel = -1; } bool synthio_synth_deinited(synthio_synth_t *synth) { return synth->buffers[0] == NULL; } void synthio_synth_deinit(synthio_synth_t *synth) { m_del(uint8_t, synth->buffers[0], synth->buffer_length); m_del(uint8_t, synth->buffers[1], synth->buffer_length); synth->buffers[0] = NULL; synth->buffers[1] = NULL; } void synthio_synth_init(synthio_synth_t *synth, uint16_t max_dur) { synth->buffer_length = MIN(SYNTHIO_MAX_DUR, max_dur) * SYNTHIO_BYTES_PER_SAMPLE; synth->buffers[0] = m_malloc(synth->buffer_length, false); synth->buffers[1] = m_malloc(synth->buffer_length, false); synth->other_channel = -1; } void synthio_synth_get_buffer_structure(synthio_synth_t *synth, bool single_channel_output, bool *single_buffer, bool *samples_signed, uint32_t *max_buffer_length, uint8_t *spacing) { *single_buffer = false; *samples_signed = true; *max_buffer_length = synth->buffer_length; *spacing = 1; } void synthio_synth_parse_waveform(mp_buffer_info_t *bufinfo_waveform, mp_obj_t waveform_obj) { *bufinfo_waveform = ((mp_buffer_info_t) { .buf = (void *)square_wave, .len = 4 }); if (waveform_obj != mp_const_none) { mp_get_buffer_raise(waveform_obj, bufinfo_waveform, MP_BUFFER_READ); if (bufinfo_waveform->typecode != 'h') { mp_raise_ValueError_varg(translate("%q must be array of type 'h'"), MP_QSTR_waveform); } } mp_arg_validate_length_range(bufinfo_waveform->len / 2, 2, 1024, MP_QSTR_waveform); } void synthio_span_init(synthio_midi_span_t *span) { span->dur = 0; for (size_t i = 0; i < CIRCUITPY_SYNTHIO_MAX_CHANNELS; i++) { span->note[i] = SYNTHIO_SILENCE; } } STATIC int find_channel_with_note(const synthio_midi_span_t *span, uint8_t note) { for (int i = 0; i < CIRCUITPY_SYNTHIO_MAX_CHANNELS; i++) { if (span->note[i] == note) { return i; } } return -1; } bool synthio_span_change_note(synthio_midi_span_t *span, uint8_t old_note, uint8_t new_note) { if (new_note != SYNTHIO_SILENCE && find_channel_with_note(span, new_note) != -1) { return false; // note already pressed, do nothing } int channel = find_channel_with_note(span, old_note); if (channel != -1) { span->note[channel] = new_note; return true; } return false; }