#include #include #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "obj.h" #include "runtime0.h" #include "runtime.h" /******************************************************************************/ // class object // creating an instance of a class makes one of these objects typedef struct _mp_obj_class_t { mp_obj_base_t base; mp_map_t members; } mp_obj_class_t; STATIC mp_obj_t mp_obj_new_class(mp_obj_t class) { mp_obj_class_t *o = m_new_obj(mp_obj_class_t); o->base.type = class; mp_map_init(&o->members, 0); return o; } // will return MP_OBJ_NULL if not found STATIC mp_obj_t mp_obj_class_lookup(const mp_obj_type_t *type, qstr attr) { for (;;) { if (type->locals_dict != NULL) { // search locals_dict (the set of methods/attributes) assert(MP_OBJ_IS_TYPE(type->locals_dict, &mp_type_dict)); // Micro Python restriction, for now mp_map_t *locals_map = mp_obj_dict_get_map(type->locals_dict); mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); if (elem != NULL) { return elem->value; } } // attribute not found, keep searching base classes // for a const struct, this entry might be NULL if (type->bases_tuple == MP_OBJ_NULL) { return NULL; } uint len; mp_obj_t *items; mp_obj_tuple_get(type->bases_tuple, &len, &items); if (len == 0) { return NULL; } for (uint i = 0; i < len - 1; i++) { assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type)); mp_obj_t obj = mp_obj_class_lookup((mp_obj_type_t*)items[i], attr); if (obj != MP_OBJ_NULL) { return obj; } } // search last base (simple tail recursion elimination) assert(MP_OBJ_IS_TYPE(items[len - 1], &mp_type_type)); type = (mp_obj_type_t*)items[len - 1]; } } STATIC void class_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { mp_obj_class_t *self = self_in; qstr meth = (kind == PRINT_STR) ? MP_QSTR___str__ : MP_QSTR___repr__; mp_obj_t member = mp_obj_class_lookup(self->base.type, meth); if (member == MP_OBJ_NULL && kind == PRINT_STR) { // If there's no __str__, fall back to __repr__ member = mp_obj_class_lookup(self->base.type, MP_QSTR___repr__); } if (member != MP_OBJ_NULL) { mp_obj_t r = mp_call_function_1(member, self_in); mp_obj_print_helper(print, env, r, PRINT_STR); return; } // TODO: CPython prints fully-qualified type name print(env, "<%s object at %p>", mp_obj_get_type_str(self_in), self_in); } STATIC mp_obj_t class_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type)); mp_obj_type_t *self = self_in; mp_obj_t o = mp_obj_new_class(self_in); // look for __init__ function mp_obj_t init_fn = mp_obj_class_lookup(self, MP_QSTR___init__); if (init_fn != MP_OBJ_NULL) { // call __init__ function mp_obj_t init_ret; if (n_args == 0 && n_kw == 0) { init_ret = mp_call_function_n_kw(init_fn, 1, 0, (mp_obj_t*)&o); } else { mp_obj_t *args2 = m_new(mp_obj_t, 1 + n_args + 2 * n_kw); args2[0] = o; memcpy(args2 + 1, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t)); init_ret = mp_call_function_n_kw(init_fn, n_args + 1, n_kw, args2); m_del(mp_obj_t, args2, 1 + n_args + 2 * n_kw); } if (init_ret != mp_const_none) { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "__init__() should return None, not '%s'", mp_obj_get_type_str(init_ret))); } } else { // TODO if (n_args != 0) { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes 0 positional arguments but %d were given", n_args)); } } return o; } STATIC const qstr unary_op_method_name[] = { [MP_UNARY_OP_BOOL] = MP_QSTR___bool__, [MP_UNARY_OP_LEN] = MP_QSTR___len__, //[MP_UNARY_OP_POSITIVE, //[MP_UNARY_OP_NEGATIVE, //[MP_UNARY_OP_INVERT, [MP_UNARY_OP_NOT] = MP_QSTR_, // don't need to implement this, used to make sure array has full size }; STATIC mp_obj_t class_unary_op(int op, mp_obj_t self_in) { mp_obj_class_t *self = self_in; qstr op_name = unary_op_method_name[op]; if (op_name == 0) { return MP_OBJ_NULL; } mp_obj_t member = mp_obj_class_lookup(self->base.type, op_name); if (member != MP_OBJ_NULL) { return mp_call_function_1(member, self_in); } else { return MP_OBJ_NULL; } } STATIC const qstr binary_op_method_name[] = { [MP_BINARY_OP_SUBSCR] = MP_QSTR___getitem__, /* MP_BINARY_OP_OR, MP_BINARY_OP_XOR, MP_BINARY_OP_AND, MP_BINARY_OP_LSHIFT, MP_BINARY_OP_RSHIFT, */ [MP_BINARY_OP_ADD] = MP_QSTR___add__, [MP_BINARY_OP_SUBTRACT] = MP_QSTR___sub__, /* MP_BINARY_OP_MULTIPLY, MP_BINARY_OP_FLOOR_DIVIDE, MP_BINARY_OP_TRUE_DIVIDE, MP_BINARY_OP_MODULO, MP_BINARY_OP_POWER, MP_BINARY_OP_INPLACE_OR, MP_BINARY_OP_INPLACE_XOR, MP_BINARY_OP_INPLACE_AND, MP_BINARY_OP_INPLACE_LSHIFT, MP_BINARY_OP_INPLACE_RSHIFT, MP_BINARY_OP_INPLACE_ADD, MP_BINARY_OP_INPLACE_SUBTRACT, MP_BINARY_OP_INPLACE_MULTIPLY, MP_BINARY_OP_INPLACE_FLOOR_DIVIDE, MP_BINARY_OP_INPLACE_TRUE_DIVIDE, MP_BINARY_OP_INPLACE_MODULO, MP_BINARY_OP_INPLACE_POWER, MP_BINARY_OP_LESS, MP_BINARY_OP_MORE, MP_BINARY_OP_EQUAL, MP_BINARY_OP_LESS_EQUAL, MP_BINARY_OP_MORE_EQUAL, MP_BINARY_OP_NOT_EQUAL, MP_BINARY_OP_IN, MP_BINARY_OP_IS, */ [MP_BINARY_OP_EXCEPTION_MATCH] = MP_QSTR_, // not implemented, used to make sure array has full size }; STATIC mp_obj_t class_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) { mp_obj_class_t *lhs = lhs_in; qstr op_name = binary_op_method_name[op]; if (op_name == 0) { return MP_OBJ_NULL; } mp_obj_t member = mp_obj_class_lookup(lhs->base.type, op_name); if (member != MP_OBJ_NULL) { return mp_call_function_2(member, lhs_in, rhs_in); } else { return MP_OBJ_NULL; } } STATIC void class_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { // logic: look in obj members then class locals (TODO check this against CPython) mp_obj_class_t *self = self_in; mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); if (elem != NULL) { // object member, always treated as a value dest[0] = elem->value; return; } mp_obj_t member = mp_obj_class_lookup(self->base.type, attr); if (member != MP_OBJ_NULL) { // check if the methods are functions, static or class methods // see http://docs.python.org/3.3/howto/descriptor.html // TODO check that this is the correct place to have this logic if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) { // return just the function dest[0] = ((mp_obj_static_class_method_t*)member)->fun; } else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) { // return a bound method, with self being the type of this object dest[0] = ((mp_obj_static_class_method_t*)member)->fun; dest[1] = mp_obj_get_type(self_in); } else if (mp_obj_is_callable(member)) { // return a bound method, with self being this object dest[0] = member; dest[1] = self_in; } else { // class member is a value, so just return that value dest[0] = member; return; } } } STATIC bool class_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) { mp_obj_class_t *self = self_in; mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value; return true; } bool class_store_item(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) { mp_obj_class_t *self = self_in; mp_obj_t member = mp_obj_class_lookup(self->base.type, MP_QSTR___setitem__); if (member != MP_OBJ_NULL) { mp_obj_t args[3] = {self_in, index, value}; mp_call_function_n_kw(member, 3, 0, args); return true; } else { return false; } } /******************************************************************************/ // type object // - the struct is mp_obj_type_t and is defined in obj.h so const types can be made // - there is a constant mp_obj_type_t (called mp_type_type) for the 'type' object // - creating a new class (a new type) creates a new mp_obj_type_t STATIC void type_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { mp_obj_type_t *self = self_in; print(env, "", qstr_str(self->name)); } STATIC mp_obj_t type_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { // TODO check n_kw == 0 switch (n_args) { case 1: return mp_obj_get_type(args[0]); case 3: // args[0] = name // args[1] = bases tuple // args[2] = locals dict return mp_obj_new_type(mp_obj_str_get_qstr(args[0]), args[1], args[2]); default: nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "type takes 1 or 3 arguments")); } } STATIC mp_obj_t type_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { // instantiate an instance of a class mp_obj_type_t *self = self_in; if (self->make_new == NULL) { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "cannot create '%s' instances", qstr_str(self->name))); } // make new instance mp_obj_t o = self->make_new(self, n_args, n_kw, args); // return new instance return o; } // for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self STATIC void type_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type)); mp_obj_type_t *self = self_in; mp_obj_t member = mp_obj_class_lookup(self, attr); if (member != MP_OBJ_NULL) { // check if the methods are functions, static or class methods // see http://docs.python.org/3.3/howto/descriptor.html if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) { // return just the function dest[0] = ((mp_obj_static_class_method_t*)member)->fun; } else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) { // return a bound method, with self being this class dest[0] = ((mp_obj_static_class_method_t*)member)->fun; dest[1] = self_in; } else { // return just the function // TODO need to wrap in a type check for the first argument; eg list.append(1,1) needs to throw an exception dest[0] = (mp_obj_t)member; } } } STATIC bool type_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_type)); mp_obj_type_t *self = self_in; // TODO CPython allows STORE_ATTR to a class, but is this the correct implementation? if (self->locals_dict != NULL) { assert(MP_OBJ_IS_TYPE(self->locals_dict, &mp_type_dict)); // Micro Python restriction, for now mp_map_t *locals_map = mp_obj_dict_get_map(self->locals_dict); mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); // note that locals_map may be in ROM, so add will fail in that case if (elem != NULL) { elem->value = value; return true; } } return false; } const mp_obj_type_t mp_type_type = { { &mp_type_type }, .name = MP_QSTR_type, .print = type_print, .make_new = type_make_new, .call = type_call, .load_attr = type_load_attr, .store_attr = type_store_attr, }; mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict) { assert(MP_OBJ_IS_TYPE(bases_tuple, &mp_type_tuple)); // Micro Python restriction, for now assert(MP_OBJ_IS_TYPE(locals_dict, &mp_type_dict)); // Micro Python restriction, for now mp_obj_type_t *o = m_new0(mp_obj_type_t, 1); o->base.type = &mp_type_type; o->name = name; o->print = class_print; o->make_new = class_make_new; o->unary_op = class_unary_op; o->binary_op = class_binary_op; o->load_attr = class_load_attr; o->store_attr = class_store_attr; o->store_item = class_store_item; o->bases_tuple = bases_tuple; o->locals_dict = locals_dict; return o; } /******************************************************************************/ // super object typedef struct _mp_obj_super_t { mp_obj_base_t base; mp_obj_t type; mp_obj_t obj; } mp_obj_super_t; STATIC void super_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) { mp_obj_super_t *self = self_in; print(env, "type, PRINT_STR); print(env, ", "); mp_obj_print_helper(print, env, self->obj, PRINT_STR); print(env, ">"); } STATIC mp_obj_t super_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { if (n_args != 2 || n_kw != 0) { // 0 arguments are turned into 2 in the compiler // 1 argument is not yet implemented nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "super() requires 2 arguments")); } return mp_obj_new_super(args[0], args[1]); } // for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self STATIC void super_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_super)); mp_obj_super_t *self = self_in; assert(MP_OBJ_IS_TYPE(self->type, &mp_type_type)); mp_obj_type_t *type = self->type; // for a const struct, this entry might be NULL if (type->bases_tuple == MP_OBJ_NULL) { return; } uint len; mp_obj_t *items; mp_obj_tuple_get(type->bases_tuple, &len, &items); for (uint i = 0; i < len; i++) { assert(MP_OBJ_IS_TYPE(items[i], &mp_type_type)); mp_obj_t member = mp_obj_class_lookup((mp_obj_type_t*)items[i], attr); if (member != MP_OBJ_NULL) { // XXX this and the code in class_load_attr need to be factored out // check if the methods are functions, static or class methods // see http://docs.python.org/3.3/howto/descriptor.html // TODO check that this is the correct place to have this logic if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) { // return just the function dest[0] = ((mp_obj_static_class_method_t*)member)->fun; } else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) { // return a bound method, with self being the type of this object dest[0] = ((mp_obj_static_class_method_t*)member)->fun; dest[1] = mp_obj_get_type(self->obj); } if (mp_obj_is_callable(member)) { // return a bound method, with self being this object dest[0] = member; dest[1] = self->obj; } else { // class member is a value, so just return that value dest[0] = member; } return; } } } const mp_obj_type_t mp_type_super = { { &mp_type_type }, .name = MP_QSTR_super, .print = super_print, .make_new = super_make_new, .load_attr = super_load_attr, }; mp_obj_t mp_obj_new_super(mp_obj_t type, mp_obj_t obj) { mp_obj_super_t *o = m_new_obj(mp_obj_super_t); *o = (mp_obj_super_t){{&mp_type_super}, type, obj}; return o; } /******************************************************************************/ // subclassing and built-ins specific to types // object and classinfo should be type objects // (but the function will fail gracefully if they are not) bool mp_obj_is_subclass_fast(mp_const_obj_t object, mp_const_obj_t classinfo) { for (;;) { if (object == classinfo) { return true; } // not equivalent classes, keep searching base classes // object should always be a type object, but just return false if it's not if (!MP_OBJ_IS_TYPE(object, &mp_type_type)) { return false; } const mp_obj_type_t *self = object; // for a const struct, this entry might be NULL if (self->bases_tuple == MP_OBJ_NULL) { return false; } // get the base objects (they should be type objects) uint len; mp_obj_t *items; mp_obj_tuple_get(self->bases_tuple, &len, &items); if (len == 0) { return false; } // iterate through the base objects for (uint i = 0; i < len - 1; i++) { if (mp_obj_is_subclass_fast(items[i], classinfo)) { return true; } } // search last base (simple tail recursion elimination) object = items[len - 1]; } } STATIC mp_obj_t mp_obj_is_subclass(mp_obj_t object, mp_obj_t classinfo) { uint len; mp_obj_t *items; if (MP_OBJ_IS_TYPE(classinfo, &mp_type_type)) { len = 1; items = &classinfo; } else if (MP_OBJ_IS_TYPE(classinfo, &mp_type_tuple)) { mp_obj_tuple_get(classinfo, &len, &items); } else { nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "issubclass() arg 2 must be a class or a tuple of classes")); } for (uint i = 0; i < len; i++) { if (mp_obj_is_subclass_fast(object, items[i])) { return mp_const_true; } } return mp_const_false; } STATIC mp_obj_t mp_builtin_issubclass(mp_obj_t object, mp_obj_t classinfo) { if (!MP_OBJ_IS_TYPE(object, &mp_type_type)) { nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "issubclass() arg 1 must be a class")); } return mp_obj_is_subclass(object, classinfo); } MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_issubclass_obj, mp_builtin_issubclass); STATIC mp_obj_t mp_builtin_isinstance(mp_obj_t object, mp_obj_t classinfo) { return mp_obj_is_subclass(mp_obj_get_type(object), classinfo); } MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_isinstance_obj, mp_builtin_isinstance); /******************************************************************************/ // staticmethod and classmethod types (probably should go in a different file) STATIC mp_obj_t static_class_method_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) { assert(self_in == &mp_type_staticmethod || self_in == &mp_type_classmethod); if (n_args != 1 || n_kw != 0) { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes 1 positional argument but %d were given", n_args)); } mp_obj_static_class_method_t *o = m_new_obj(mp_obj_static_class_method_t); *o = (mp_obj_static_class_method_t){{(mp_obj_type_t*)self_in}, args[0]}; return o; } const mp_obj_type_t mp_type_staticmethod = { { &mp_type_type }, .name = MP_QSTR_staticmethod, .make_new = static_class_method_make_new }; const mp_obj_type_t mp_type_classmethod = { { &mp_type_type }, .name = MP_QSTR_classmethod, .make_new = static_class_method_make_new };