/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2018 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/obj.h" #include "py/mperrno.h" #include "led.h" #include "flash.h" #include "storage.h" #if MICROPY_HW_ENABLE_INTERNAL_FLASH_STORAGE // Here we try to automatically configure the location and size of the flash // pages to use for the internal storage. We also configure the location of the // cache used for writing. #if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) #define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k #define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM #define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1 #define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k // enable this to get an extra 64k of storage (uses the last sector of the flash) #if 0 #define FLASH_MEM_SEG2_START_ADDR (0x080e0000) // sector 11 #define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 11: 128k #endif #elif defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx) STATIC byte flash_cache_mem[0x4000] __attribute__((aligned(4))); // 16k #define CACHE_MEM_START_ADDR (&flash_cache_mem[0]) #define FLASH_SECTOR_SIZE_MAX (0x4000) // 16k max due to size of cache buffer #define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1 #define FLASH_MEM_SEG1_NUM_BLOCKS (128) // sectors 1,2,3,4: 16k+16k+16k+16k(of 64k)=64k #elif defined(STM32F429xx) #define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k #define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM #define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1 #define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k #elif defined(STM32F439xx) #define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k #define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM #define FLASH_MEM_SEG1_START_ADDR (0x08100000) // sector 12 #define FLASH_MEM_SEG1_NUM_BLOCKS (384) // sectors 12,13,14,15,16,17: 16k+16k+16k+16k+64k+64k(of 128k)=192k #define FLASH_MEM_SEG2_START_ADDR (0x08140000) // sector 18 #define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 18: 64k(of 128k) #elif defined(STM32F746xx) || defined(STM32F767xx) || defined(STM32F769xx) // The STM32F746 doesn't really have CCRAM, so we use the 64K DTCM for this. #define CACHE_MEM_START_ADDR (0x20000000) // DTCM data RAM, 64k #define FLASH_SECTOR_SIZE_MAX (0x08000) // 32k max #define FLASH_MEM_SEG1_START_ADDR (0x08008000) // sector 1 #define FLASH_MEM_SEG1_NUM_BLOCKS (192) // sectors 1,2,3: 32k+32k+32=96k #elif defined(STM32H743xx) // The STM32H743 flash sectors are 128K #define CACHE_MEM_START_ADDR (0x20000000) // DTCM data RAM, 128k #define FLASH_SECTOR_SIZE_MAX (0x20000) // 128k max #define FLASH_MEM_SEG1_START_ADDR (0x08020000) // sector 1 #define FLASH_MEM_SEG1_NUM_BLOCKS (256) // Sector 1: 128k / 512b = 256 blocks #elif defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L496xx) // The STM32L475/6 doesn't have CCRAM, so we use the 32K SRAM2 for this, although // actual location and size is defined by the linker script. extern uint8_t _flash_fs_start; extern uint8_t _flash_fs_end; extern uint8_t _ram_fs_cache_start[]; // size determined by linker file extern uint8_t _ram_fs_cache_end[]; #define CACHE_MEM_START_ADDR ((uintptr_t)&_ram_fs_cache_start[0]) #define FLASH_SECTOR_SIZE_MAX (&_ram_fs_cache_end[0] - &_ram_fs_cache_start[0]) // 2k max #define FLASH_MEM_SEG1_START_ADDR ((long)&_flash_fs_start) #define FLASH_MEM_SEG1_NUM_BLOCKS ((&_flash_fs_end - &_flash_fs_start) / 512) #else #error "no internal flash storage support for this MCU" #endif #if !defined(FLASH_MEM_SEG2_START_ADDR) #define FLASH_MEM_SEG2_START_ADDR (0) // no second segment #define FLASH_MEM_SEG2_NUM_BLOCKS (0) // no second segment #endif #define FLASH_FLAG_DIRTY (1) #define FLASH_FLAG_FORCE_WRITE (2) #define FLASH_FLAG_ERASED (4) static __IO uint8_t flash_flags = 0; static uint32_t flash_cache_sector_id; static uint32_t flash_cache_sector_start; static uint32_t flash_cache_sector_size; static uint32_t flash_tick_counter_last_write; static void flash_bdev_irq_handler(void); int32_t flash_bdev_ioctl(uint32_t op, uint32_t arg) { (void)arg; switch (op) { case BDEV_IOCTL_INIT: flash_flags = 0; flash_cache_sector_id = 0; flash_tick_counter_last_write = 0; return 0; case BDEV_IOCTL_NUM_BLOCKS: return FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS; case BDEV_IOCTL_IRQ_HANDLER: flash_bdev_irq_handler(); return 0; case BDEV_IOCTL_SYNC: { uint32_t basepri = raise_irq_pri(IRQ_PRI_FLASH); // prevent cache flushing and USB access if (flash_flags & FLASH_FLAG_DIRTY) { flash_flags |= FLASH_FLAG_FORCE_WRITE; while (flash_flags & FLASH_FLAG_DIRTY) { flash_bdev_irq_handler(); } } restore_irq_pri(basepri); return 0; } } return -MP_EINVAL; } static uint8_t *flash_cache_get_addr_for_write(uint32_t flash_addr) { uint32_t flash_sector_start; uint32_t flash_sector_size; uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size); if (flash_sector_size > FLASH_SECTOR_SIZE_MAX) { flash_sector_size = FLASH_SECTOR_SIZE_MAX; } if (flash_cache_sector_id != flash_sector_id) { flash_bdev_ioctl(BDEV_IOCTL_SYNC, 0); memcpy((void*)CACHE_MEM_START_ADDR, (const void*)flash_sector_start, flash_sector_size); flash_cache_sector_id = flash_sector_id; flash_cache_sector_start = flash_sector_start; flash_cache_sector_size = flash_sector_size; } flash_flags |= FLASH_FLAG_DIRTY; led_state(PYB_LED_RED, 1); // indicate a dirty cache with LED on flash_tick_counter_last_write = HAL_GetTick(); return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start; } static uint8_t *flash_cache_get_addr_for_read(uint32_t flash_addr) { uint32_t flash_sector_start; uint32_t flash_sector_size; uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size); if (flash_cache_sector_id == flash_sector_id) { // in cache, copy from there return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start; } // not in cache, copy straight from flash return (uint8_t*)flash_addr; } static uint32_t convert_block_to_flash_addr(uint32_t block) { if (block < FLASH_MEM_SEG1_NUM_BLOCKS) { return FLASH_MEM_SEG1_START_ADDR + block * FLASH_BLOCK_SIZE; } if (block < FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS) { return FLASH_MEM_SEG2_START_ADDR + (block - FLASH_MEM_SEG1_NUM_BLOCKS) * FLASH_BLOCK_SIZE; } // can add more flash segments here if needed, following above pattern // bad block return -1; } static void flash_bdev_irq_handler(void) { if (!(flash_flags & FLASH_FLAG_DIRTY)) { return; } // This code uses interrupts to erase the flash /* if (flash_erase_state == 0) { flash_erase_it(flash_cache_sector_start, flash_cache_sector_size / 4); flash_erase_state = 1; return; } if (flash_erase_state == 1) { // wait for erase // TODO add timeout #define flash_erase_done() (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) == RESET) if (!flash_erase_done()) { return; } flash_erase_state = 2; } */ // This code erases the flash directly, waiting for it to finish if (!(flash_flags & FLASH_FLAG_ERASED)) { flash_erase(flash_cache_sector_start, flash_cache_sector_size / 4); flash_flags |= FLASH_FLAG_ERASED; return; } // If not a forced write, wait at least 5 seconds after last write to flush // On file close and flash unmount we get a forced write, so we can afford to wait a while if ((flash_flags & FLASH_FLAG_FORCE_WRITE) || HAL_GetTick() - flash_tick_counter_last_write >= 5000) { // sync the cache RAM buffer by writing it to the flash page flash_write(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4); // clear the flash flags now that we have a clean cache flash_flags = 0; // indicate a clean cache with LED off led_state(PYB_LED_RED, 0); } } bool flash_bdev_readblock(uint8_t *dest, uint32_t block) { // non-MBR block, get data from flash memory, possibly via cache uint32_t flash_addr = convert_block_to_flash_addr(block); if (flash_addr == -1) { // bad block number return false; } uint8_t *src = flash_cache_get_addr_for_read(flash_addr); memcpy(dest, src, FLASH_BLOCK_SIZE); return true; } bool flash_bdev_writeblock(const uint8_t *src, uint32_t block) { // non-MBR block, copy to cache uint32_t flash_addr = convert_block_to_flash_addr(block); if (flash_addr == -1) { // bad block number return false; } uint32_t basepri = raise_irq_pri(IRQ_PRI_FLASH); // prevent cache flushing and USB access uint8_t *dest = flash_cache_get_addr_for_write(flash_addr); memcpy(dest, src, FLASH_BLOCK_SIZE); restore_irq_pri(basepri); return true; } #endif // MICROPY_HW_ENABLE_INTERNAL_FLASH_STORAGE