/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2017 Michael McWethy * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/builtin.h" #include "py/runtime.h" #if MICROPY_PY_BUILTINS_FLOAT #include // M_PI is not part of the math.h standard and may not be defined // And by defining our own we can ensure it uses the correct const format. #define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846) //| """mathematical functions //| //| The `math` module provides some basic mathematical functions for //| working with floating-point numbers. //| //| |see_cpython_module| :mod:`cpython:math`. //| """ STATIC NORETURN void math_error(void) { mp_raise_ValueError(translate("math domain error")); } #define MATH_FUN_1(py_name, c_name) \ STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name); #define MATH_FUN_2(py_name, c_name) \ STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_float(y_obj))); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name); #define MATH_FUN_1_TO_BOOL(py_name, c_name) \ STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name); #define MATH_FUN_1_TO_INT(py_name, c_name) \ STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name); #define MATH_FUN_1_ERRCOND(py_name, c_name, error_condition) \ STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { \ mp_float_t x = mp_obj_get_float(x_obj); \ if (error_condition) { \ math_error(); \ } \ return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(x)); \ } \ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name); #ifdef MP_NEED_LOG2 // 1.442695040888963407354163704 is 1/_M_LN2 #define log2(x) (log(x) * 1.442695040888963407354163704) #endif //| e: float //| """base of the natural logarithm""" //| //| pi: float //| """the ratio of a circle's circumference to its diameter""" //| //| def acos(x: float) -> float: //| """Return the inverse cosine of ``x``.""" //| ... //| //| def asin(x: float) -> float: //| """Return the inverse sine of ``x``.""" //| ... //| //| def atan(x: float) -> float: //| """Return the inverse tangent of ``x``.""" //| ... //| //| def atan2(y: float, x: float) -> float: //| """Return the principal value of the inverse tangent of ``y/x``.""" //| ... //| //| def ceil(x: float) -> int: //| """Return an integer, being ``x`` rounded towards positive infinity.""" //| ... //| //| def copysign(x: float, y: float) -> float: //| """Return ``x`` with the sign of ``y``.""" //| ... //| //| def cos(x: float) -> float: //| """Return the cosine of ``x``.""" //| ... //| //| def degrees(x: float) -> float: //| """Return radians ``x`` converted to degrees.""" //| ... //| //| def exp(x: float) -> float: //| """Return the exponential of ``x``.""" //| ... //| //| def fabs(x: float) -> float: //| """Return the absolute value of ``x``.""" //| ... //| //| def floor(x: float) -> int: //| """Return an integer, being ``x`` rounded towards negative infinity.""" //| ... //| //| def fmod(x: float, y: float) -> int: //| """Return the remainder of ``x/y``.""" //| ... //| //| def frexp(x: float) -> Tuple[int, int]: //| """Decomposes a floating-point number into its mantissa and exponent. //| The returned value is the tuple ``(m, e)`` such that ``x == m * 2**e`` //| exactly. If ``x == 0`` then the function returns ``(0.0, 0)``, otherwise //| the relation ``0.5 <= abs(m) < 1`` holds.""" //| ... //| //| def isfinite(x: float) -> bool: //| """Return ``True`` if ``x`` is finite.""" //| ... //| //| def isinf(x: float) -> bool: //| """Return ``True`` if ``x`` is infinite.""" //| ... //| //| def isnan(x: float) -> bool: //| """Return ``True`` if ``x`` is not-a-number""" //| ... //| //| def ldexp(x: float, exp: float) -> float: //| """Return ``x * (2**exp)``.""" //| ... //| //| def log(x: float, base: float = e) -> float: //| """Return the logarithm of x to the given base. If base is not specified, //| returns the natural logarithm (base e) of x""" //| ... //| //| def modf(x: float) -> Tuple[float, float]: //| """Return a tuple of two floats, being the fractional and integral parts of //| ``x``. Both return values have the same sign as ``x``.""" //| ... //| //| def pow(x: float, y: float) -> float: //| """Returns ``x`` to the power of ``y``.""" //| //| def radians(x: float) -> float: //| """Return degrees ``x`` converted to radians.""" //| //| def sin(x: float) -> float: //| """Return the sine of ``x``.""" //| ... //| //| def sqrt(x: float) -> float: //| """Returns the square root of ``x``.""" //| ... //| //| def tan(x: float) -> float: //| """Return the tangent of ``x``.""" //| ... //| //| def trunc(x: float) -> int: //| """Return an integer, being ``x`` rounded towards 0.""" //| ... //| MATH_FUN_1_ERRCOND(sqrt, sqrt, (x < (mp_float_t)0.0)) MATH_FUN_2(pow, pow) MATH_FUN_1(exp, exp) #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS //| def expm1(x: float) -> float: //| """Return ``exp(x) - 1``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1(expm1, expm1) //| def log2(x: float) -> float: //| """Return the base-2 logarithm of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1_ERRCOND(log2, log2, (x <= (mp_float_t)0.0)) //| def log10(x: float) -> float: //| """Return the base-10 logarithm of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1_ERRCOND(log10, log10, (x <= (mp_float_t)0.0)) //| def cosh(x: float) -> float: //| """Return the hyperbolic cosine of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1(cosh, cosh) //| def sinh(x: float) -> float: //| """Return the hyperbolic sine of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1(sinh, sinh) //| def tanh(x: float) -> float: //| """Return the hyperbolic tangent of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1(tanh, tanh) //| def acosh(x: float) -> float: //| """Return the inverse hyperbolic cosine of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1(acosh, acosh) //| def asinh(x: float) -> float: //| """Return the inverse hyperbolic sine of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1(asinh, asinh) //| def atanh(x: float) -> float: //| """Return the inverse hyperbolic tangent of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1(atanh, atanh) #endif MATH_FUN_1(cos, cos) MATH_FUN_1(sin, sin) MATH_FUN_1(tan, tan) MATH_FUN_1(acos, acos) MATH_FUN_1(asin, asin) MATH_FUN_1(atan, atan) MATH_FUN_2(atan2, atan2) MATH_FUN_1_TO_INT(ceil, ceil) MATH_FUN_2(copysign, copysign) MATH_FUN_1(fabs, fabs) MATH_FUN_1_TO_INT(floor, floor) // TODO: delegate to x.__floor__() if x is not a float MATH_FUN_2(fmod, fmod) MATH_FUN_1_TO_BOOL(isfinite, isfinite) MATH_FUN_1_TO_BOOL(isinf, isinf) MATH_FUN_1_TO_BOOL(isnan, isnan) MATH_FUN_1_TO_INT(trunc, trunc) MATH_FUN_2(ldexp, ldexp) #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS //| def erf(x: float) -> float: //| """Return the error function of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1(erf, erf) //| def erfc(x: float) -> float: //| """Return the complementary error function of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1(erfc, erfc) //| def gamma(x: float) -> float: //| """Return the gamma function of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1(gamma, tgamma) //| def lgamma(x: float) -> float: //| """Return the natural logarithm of the gamma function of ``x``. //| //| May not be available on some boards. //| """ //| ... //| MATH_FUN_1(lgamma, lgamma) #endif // TODO: factorial, fsum // Function that takes a variable number of arguments // log(x[, base]) STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) { mp_float_t x = mp_obj_get_float(args[0]); if (x <= (mp_float_t)0.0) { math_error(); } mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x); if (n_args == 1) { return mp_obj_new_float(l); } else { mp_float_t base = mp_obj_get_float(args[1]); if (base <= (mp_float_t)0.0) { math_error(); // Turn off warning when comparing exactly with integral value 1.0 #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" } else if (base == (mp_float_t)1.0) { #pragma GCC diagnostic pop math_error(); } return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base)); } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log); // Functions that return a tuple STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) { int int_exponent = 0; mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent); mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(significand); tuple[1] = mp_obj_new_int(int_exponent); return mp_obj_new_tuple(2, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp); STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) { mp_float_t int_part = 0.0; mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part); mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(fractional_part); tuple[1] = mp_obj_new_float(int_part); return mp_obj_new_tuple(2, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf); // Angular conversions STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) { return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0))); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians); STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) { return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees); STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) }, { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e }, { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi }, { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) }, { MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) }, { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) }, { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) }, { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) }, { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) }, { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) }, { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) }, { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) }, { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) }, { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) }, { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) }, { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) }, { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) }, { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) }, { MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) }, { MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) }, { MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) }, { MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) }, { MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) }, { MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) }, { MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) }, { MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) }, { MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) }, { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) }, { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) }, { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) }, { MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) }, { MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) }, { MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) }, { MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) }, { MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) }, { MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) }, #endif }; STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table); const mp_obj_module_t math_module = { .base = { &mp_type_module }, .globals = (mp_obj_dict_t *)&mp_module_math_globals, }; MP_REGISTER_MODULE(MP_QSTR_math, math_module); #endif // MICROPY_PY_BUILTINS_FLOAT