/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/displayio/Bitmap.h" #include #include "py/runtime.h" void common_hal_displayio_bitmap_construct(displayio_bitmap_t *self, uint32_t width, uint32_t height, uint32_t bits_per_value) { uint32_t row_width = width * bits_per_value; // align to size_t uint8_t align_bits = 8 * sizeof(size_t); if (row_width % align_bits != 0) { self->stride = (row_width / align_bits + 1); } else { self->stride = row_width / align_bits; } self->width = width; self->height = height; self->data = m_malloc(self->stride * height * sizeof(size_t), false); self->read_only = false; self->bits_per_value = bits_per_value; if (bits_per_value > 8 && bits_per_value != 16 && bits_per_value != 32) { mp_raise_NotImplementedError(translate("Invalid bits per value")); } // Division and modulus can be slow because it has to handle any integer. We know bits_per_value // is a power of two. We divide and mod by bits_per_value to compute the offset into the byte // array. So, we can the offset computation to simplify to a shift for division and mask for mod. self->x_shift = 0; // Used to divide the index by the number of pixels per word. Its used in a // shift which effectively divides by 2 ** x_shift. uint32_t power_of_two = 1; while (power_of_two < align_bits / bits_per_value ) { self->x_shift++; power_of_two <<= 1; } self->x_mask = (1 << self->x_shift) - 1; // Used as a modulus on the x value self->bitmask = (1 << bits_per_value) - 1; self->dirty_area.x1 = 0; self->dirty_area.x2 = width; self->dirty_area.y1 = 0; self->dirty_area.y2 = height; } uint16_t common_hal_displayio_bitmap_get_height(displayio_bitmap_t *self) { return self->height; } uint16_t common_hal_displayio_bitmap_get_width(displayio_bitmap_t *self) { return self->width; } uint32_t common_hal_displayio_bitmap_get_bits_per_value(displayio_bitmap_t *self) { return self->bits_per_value; } uint32_t common_hal_displayio_bitmap_get_pixel(displayio_bitmap_t *self, int16_t x, int16_t y) { if (x >= self->width || x < 0 || y >= self->height || y < 0) { return 0; } int32_t row_start = y * self->stride; uint32_t bytes_per_value = self->bits_per_value / 8; if (bytes_per_value < 1) { size_t word = self->data[row_start + (x >> self->x_shift)]; return (word >> (sizeof(size_t) * 8 - ((x & self->x_mask) + 1) * self->bits_per_value)) & self->bitmask; } else { size_t* row = self->data + row_start; if (bytes_per_value == 1) { return ((uint8_t*) row)[x]; } else if (bytes_per_value == 2) { return ((uint16_t*) row)[x]; } else if (bytes_per_value == 4) { return ((uint32_t*) row)[x]; } } return 0; } void common_hal_displayio_bitmap_set_pixel(displayio_bitmap_t *self, int16_t x, int16_t y, uint32_t value) { if (self->read_only) { mp_raise_RuntimeError(translate("Read-only object")); } // Update the dirty area. if (self->dirty_area.x1 == self->dirty_area.x2) { self->dirty_area.x1 = x; self->dirty_area.x2 = x + 1; self->dirty_area.y1 = y; self->dirty_area.y2 = y + 1; } else { if (x < self->dirty_area.x1) { self->dirty_area.x1 = x; } else if (x >= self->dirty_area.x2) { self->dirty_area.x2 = x + 1; } if (y < self->dirty_area.y1) { self->dirty_area.y1 = y; } else if (y >= self->dirty_area.y2) { self->dirty_area.y2 = y + 1; } } // Update our data int32_t row_start = y * self->stride; uint32_t bytes_per_value = self->bits_per_value / 8; if (bytes_per_value < 1) { uint32_t bit_position = (sizeof(size_t) * 8 - ((x & self->x_mask) + 1) * self->bits_per_value); uint32_t index = row_start + (x >> self->x_shift); uint32_t word = self->data[index]; word &= ~(self->bitmask << bit_position); word |= (value & self->bitmask) << bit_position; self->data[index] = word; } else { size_t* row = self->data + row_start; if (bytes_per_value == 1) { ((uint8_t*) row)[x] = value; } else if (bytes_per_value == 2) { ((uint16_t*) row)[x] = value; } else if (bytes_per_value == 4) { ((uint32_t*) row)[x] = value; } } } displayio_area_t* displayio_bitmap_get_refresh_areas(displayio_bitmap_t *self, displayio_area_t* tail) { if (self->dirty_area.x1 == self->dirty_area.x2) { return tail; } self->dirty_area.next = tail; return &self->dirty_area; } void displayio_bitmap_finish_refresh(displayio_bitmap_t *self) { self->dirty_area.x1 = 0; self->dirty_area.x2 = 0; }