/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/displayio/TileGrid.h" #include "py/runtime.h" #include "shared-bindings/displayio/Bitmap.h" #include "shared-bindings/displayio/ColorConverter.h" #include "shared-bindings/displayio/OnDiskBitmap.h" #include "shared-bindings/displayio/Palette.h" void common_hal_displayio_tilegrid_construct(displayio_tilegrid_t *self, mp_obj_t bitmap, uint16_t bitmap_width_in_tiles, uint16_t bitmap_height_in_tiles, mp_obj_t pixel_shader, uint16_t width, uint16_t height, uint16_t tile_width, uint16_t tile_height, uint16_t x, uint16_t y, uint8_t default_tile) { uint32_t total_tiles = width * height; // Sprites will only have one tile so save a little memory by inlining values in the pointer. uint8_t inline_tiles = sizeof(uint8_t *); if (total_tiles <= inline_tiles) { self->tiles = 0; // Pack values into the pointer since there are only a few. for (uint32_t i = 0; i < inline_tiles; i++) { ((uint8_t *)&self->tiles)[i] = default_tile; } self->inline_tiles = true; } else { self->tiles = (uint8_t *)m_malloc(total_tiles); for (uint32_t i = 0; i < total_tiles; i++) { self->tiles[i] = default_tile; } self->inline_tiles = false; } self->bitmap_width_in_tiles = bitmap_width_in_tiles; self->tiles_in_bitmap = bitmap_width_in_tiles * bitmap_height_in_tiles; self->width_in_tiles = width; self->height_in_tiles = height; self->x = x; self->y = y; self->pixel_width = width * tile_width; self->pixel_height = height * tile_height; self->tile_width = tile_width; self->tile_height = tile_height; self->bitmap = bitmap; self->pixel_shader = pixel_shader; self->in_group = false; self->hidden = false; self->hidden_by_parent = false; self->previous_area.x1 = 0xffff; self->previous_area.x2 = self->previous_area.x1; self->flip_x = false; self->flip_y = false; self->transpose_xy = false; self->absolute_transform = NULL; } bool common_hal_displayio_tilegrid_get_hidden(displayio_tilegrid_t *self) { return self->hidden; } bool displayio_tilegrid_get_rendered_hidden(displayio_tilegrid_t *self) { return self->rendered_hidden; } void common_hal_displayio_tilegrid_set_hidden(displayio_tilegrid_t *self, bool hidden) { self->hidden = hidden; self->rendered_hidden = false; if (!hidden) { self->full_change = true; } } void displayio_tilegrid_set_hidden_by_parent(displayio_tilegrid_t *self, bool hidden) { self->hidden_by_parent = hidden; self->rendered_hidden = false; if (!hidden) { self->full_change = true; } } bool displayio_tilegrid_get_previous_area(displayio_tilegrid_t *self, displayio_area_t *area) { if (self->previous_area.x1 == self->previous_area.x2) { return false; } displayio_area_copy(&self->previous_area, area); return true; } STATIC void _update_current_x(displayio_tilegrid_t *self) { uint16_t width; if (self->transpose_xy) { width = self->pixel_height; } else { width = self->pixel_width; } // If there's no transform, substitute an identity transform so the calculations will work. const displayio_buffer_transform_t *absolute_transform = self->absolute_transform == NULL ? &null_transform : self->absolute_transform; if (absolute_transform->transpose_xy) { self->current_area.y1 = absolute_transform->y + absolute_transform->dy * self->x; self->current_area.y2 = absolute_transform->y + absolute_transform->dy * (self->x + width); if (self->current_area.y2 < self->current_area.y1) { int16_t temp = self->current_area.y2; self->current_area.y2 = self->current_area.y1; self->current_area.y1 = temp; } } else { self->current_area.x1 = absolute_transform->x + absolute_transform->dx * self->x; self->current_area.x2 = absolute_transform->x + absolute_transform->dx * (self->x + width); if (self->current_area.x2 < self->current_area.x1) { int16_t temp = self->current_area.x2; self->current_area.x2 = self->current_area.x1; self->current_area.x1 = temp; } } } STATIC void _update_current_y(displayio_tilegrid_t *self) { uint16_t height; if (self->transpose_xy) { height = self->pixel_width; } else { height = self->pixel_height; } // If there's no transform, substitute an identity transform so the calculations will work. const displayio_buffer_transform_t *absolute_transform = self->absolute_transform == NULL ? &null_transform : self->absolute_transform; if (absolute_transform->transpose_xy) { self->current_area.x1 = absolute_transform->x + absolute_transform->dx * self->y; self->current_area.x2 = absolute_transform->x + absolute_transform->dx * (self->y + height); if (self->current_area.x2 < self->current_area.x1) { int16_t temp = self->current_area.x2; self->current_area.x2 = self->current_area.x1; self->current_area.x1 = temp; } } else { self->current_area.y1 = absolute_transform->y + absolute_transform->dy * self->y; self->current_area.y2 = absolute_transform->y + absolute_transform->dy * (self->y + height); if (self->current_area.y2 < self->current_area.y1) { int16_t temp = self->current_area.y2; self->current_area.y2 = self->current_area.y1; self->current_area.y1 = temp; } } } void displayio_tilegrid_update_transform(displayio_tilegrid_t *self, const displayio_buffer_transform_t *absolute_transform) { self->in_group = absolute_transform != NULL; self->absolute_transform = absolute_transform; if (absolute_transform != NULL) { self->moved = true; _update_current_x(self); _update_current_y(self); } } mp_int_t common_hal_displayio_tilegrid_get_x(displayio_tilegrid_t *self) { return self->x; } void common_hal_displayio_tilegrid_set_x(displayio_tilegrid_t *self, mp_int_t x) { if (self->x == x) { return; } self->moved = true; self->x = x; if (self->absolute_transform != NULL) { _update_current_x(self); } } mp_int_t common_hal_displayio_tilegrid_get_y(displayio_tilegrid_t *self) { return self->y; } void common_hal_displayio_tilegrid_set_y(displayio_tilegrid_t *self, mp_int_t y) { if (self->y == y) { return; } self->moved = true; self->y = y; if (self->absolute_transform != NULL) { _update_current_y(self); } } mp_obj_t common_hal_displayio_tilegrid_get_pixel_shader(displayio_tilegrid_t *self) { return self->pixel_shader; } void common_hal_displayio_tilegrid_set_pixel_shader(displayio_tilegrid_t *self, mp_obj_t pixel_shader) { self->pixel_shader = pixel_shader; self->full_change = true; } mp_obj_t common_hal_displayio_tilegrid_get_bitmap(displayio_tilegrid_t *self) { return self->bitmap; } void common_hal_displayio_tilegrid_set_bitmap(displayio_tilegrid_t *self, mp_obj_t bitmap) { self->bitmap = bitmap; self->full_change = true; } uint16_t common_hal_displayio_tilegrid_get_width(displayio_tilegrid_t *self) { return self->width_in_tiles; } uint16_t common_hal_displayio_tilegrid_get_height(displayio_tilegrid_t *self) { return self->height_in_tiles; } uint16_t common_hal_displayio_tilegrid_get_tile_width(displayio_tilegrid_t *self) { return self->tile_width; } uint16_t common_hal_displayio_tilegrid_get_tile_height(displayio_tilegrid_t *self) { return self->tile_height; } uint8_t common_hal_displayio_tilegrid_get_tile(displayio_tilegrid_t *self, uint16_t x, uint16_t y) { uint8_t *tiles = self->tiles; if (self->inline_tiles) { tiles = (uint8_t *)&self->tiles; } if (tiles == NULL) { return 0; } return tiles[y * self->width_in_tiles + x]; } void common_hal_displayio_tilegrid_set_tile(displayio_tilegrid_t *self, uint16_t x, uint16_t y, uint8_t tile_index) { if (tile_index >= self->tiles_in_bitmap) { mp_raise_ValueError(translate("Tile index out of bounds")); } uint8_t *tiles = self->tiles; if (self->inline_tiles) { tiles = (uint8_t *)&self->tiles; } if (tiles == NULL) { return; } tiles[y * self->width_in_tiles + x] = tile_index; displayio_area_t temp_area; displayio_area_t *tile_area; if (!self->partial_change) { tile_area = &self->dirty_area; } else { tile_area = &temp_area; } int16_t tx = (x - self->top_left_x) % self->width_in_tiles; if (tx < 0) { tx += self->width_in_tiles; } tile_area->x1 = tx * self->tile_width; tile_area->x2 = tile_area->x1 + self->tile_width; int16_t ty = (y - self->top_left_y) % self->height_in_tiles; if (ty < 0) { ty += self->height_in_tiles; } tile_area->y1 = ty * self->tile_height; tile_area->y2 = tile_area->y1 + self->tile_height; if (self->partial_change) { displayio_area_union(&self->dirty_area, &temp_area, &self->dirty_area); } self->partial_change = true; } void common_hal_displayio_tilegrid_set_all_tiles(displayio_tilegrid_t *self, uint8_t tile_index) { if (tile_index >= self->tiles_in_bitmap) { mp_raise_ValueError(translate("Tile index out of bounds")); } uint8_t *tiles = self->tiles; if (self->inline_tiles) { tiles = (uint8_t *)&self->tiles; } if (tiles == NULL) { return; } for (uint16_t x = 0; x < self->width_in_tiles; x++) { for (uint16_t y = 0; y < self->height_in_tiles; y++) { tiles[y * self->width_in_tiles + x] = tile_index; } } self->full_change = true; } bool common_hal_displayio_tilegrid_get_flip_x(displayio_tilegrid_t *self) { return self->flip_x; } void common_hal_displayio_tilegrid_set_flip_x(displayio_tilegrid_t *self, bool flip_x) { if (self->flip_x == flip_x) { return; } self->flip_x = flip_x; self->full_change = true; } bool common_hal_displayio_tilegrid_get_flip_y(displayio_tilegrid_t *self) { return self->flip_y; } void common_hal_displayio_tilegrid_set_flip_y(displayio_tilegrid_t *self, bool flip_y) { if (self->flip_y == flip_y) { return; } self->flip_y = flip_y; self->full_change = true; } bool common_hal_displayio_tilegrid_get_transpose_xy(displayio_tilegrid_t *self) { return self->transpose_xy; } void common_hal_displayio_tilegrid_set_transpose_xy(displayio_tilegrid_t *self, bool transpose_xy) { if (self->transpose_xy == transpose_xy) { return; } self->transpose_xy = transpose_xy; // Square TileGrids do not change dimensions when transposed. if (self->pixel_width == self->pixel_height) { self->full_change = true; return; } _update_current_x(self); _update_current_y(self); self->moved = true; } bool common_hal_displayio_tilegrid_contains(displayio_tilegrid_t *self, uint16_t x, uint16_t y) { uint16_t right_edge = self->x + (self->width_in_tiles * self->tile_width); uint16_t bottom_edge = self->y + (self->height_in_tiles * self->tile_height); return x >= self->x && x < right_edge && y >= self->y && y < bottom_edge; } void common_hal_displayio_tilegrid_set_top_left(displayio_tilegrid_t *self, uint16_t x, uint16_t y) { self->top_left_x = x; self->top_left_y = y; self->full_change = true; } bool displayio_tilegrid_fill_area(displayio_tilegrid_t *self, const _displayio_colorspace_t *colorspace, const displayio_area_t *area, uint32_t *mask, uint32_t *buffer) { // If no tiles are present we have no impact. uint8_t *tiles = self->tiles; if (self->inline_tiles) { tiles = (uint8_t *)&self->tiles; } if (tiles == NULL) { return false; } bool hidden = self->hidden || self->hidden_by_parent; if (hidden) { return false; } displayio_area_t overlap; if (!displayio_area_compute_overlap(area, &self->current_area, &overlap)) { return false; } int16_t x_stride = 1; int16_t y_stride = displayio_area_width(area); bool flip_x = self->flip_x; bool flip_y = self->flip_y; if (self->transpose_xy != self->absolute_transform->transpose_xy) { bool temp_flip = flip_x; flip_x = flip_y; flip_y = temp_flip; } // How many pixels are outside of our area between us and the start of the row. uint16_t start = 0; if ((self->absolute_transform->dx < 0) != flip_x) { start += (area->x2 - area->x1 - 1) * x_stride; x_stride *= -1; } if ((self->absolute_transform->dy < 0) != flip_y) { start += (area->y2 - area->y1 - 1) * y_stride; y_stride *= -1; } // Track if this layer finishes filling in the given area. We can ignore any remaining // layers at that point. bool full_coverage = displayio_area_equal(area, &overlap); // TODO(tannewt): Skip coverage tracking if all pixels outside the overlap have already been // set and our palette is all opaque. // TODO(tannewt): Check to see if the pixel_shader has any transparency. If it doesn't then we // can either return full coverage or bulk update the mask. displayio_area_t transformed; displayio_area_transform_within(flip_x != (self->absolute_transform->dx < 0), flip_y != (self->absolute_transform->dy < 0), self->transpose_xy != self->absolute_transform->transpose_xy, &overlap, &self->current_area, &transformed); int16_t start_x = (transformed.x1 - self->current_area.x1); int16_t end_x = (transformed.x2 - self->current_area.x1); int16_t start_y = (transformed.y1 - self->current_area.y1); int16_t end_y = (transformed.y2 - self->current_area.y1); int16_t y_shift = 0; int16_t x_shift = 0; if ((self->absolute_transform->dx < 0) != flip_x) { x_shift = area->x2 - overlap.x2; } else { x_shift = overlap.x1 - area->x1; } if ((self->absolute_transform->dy < 0) != flip_y) { y_shift = area->y2 - overlap.y2; } else { y_shift = overlap.y1 - area->y1; } // This untransposes x and y so it aligns with bitmap rows. if (self->transpose_xy != self->absolute_transform->transpose_xy) { int16_t temp_stride = x_stride; x_stride = y_stride; y_stride = temp_stride; int16_t temp_shift = x_shift; x_shift = y_shift; y_shift = temp_shift; } uint8_t pixels_per_byte = 8 / colorspace->depth; displayio_input_pixel_t input_pixel; displayio_output_pixel_t output_pixel; for (input_pixel.y = start_y; input_pixel.y < end_y; ++input_pixel.y) { int16_t row_start = start + (input_pixel.y - start_y + y_shift) * y_stride; // in pixels int16_t local_y = input_pixel.y / self->absolute_transform->scale; for (input_pixel.x = start_x; input_pixel.x < end_x; ++input_pixel.x) { // Compute the destination pixel in the buffer and mask based on the transformations. int16_t offset = row_start + (input_pixel.x - start_x + x_shift) * x_stride; // in pixels // This is super useful for debugging out of range accesses. Uncomment to use. // if (offset < 0 || offset >= (int32_t) displayio_area_size(area)) { // asm("bkpt"); // } // Check the mask first to see if the pixel has already been set. if ((mask[offset / 32] & (1 << (offset % 32))) != 0) { continue; } int16_t local_x = input_pixel.x / self->absolute_transform->scale; uint16_t tile_location = ((local_y / self->tile_height + self->top_left_y) % self->height_in_tiles) * self->width_in_tiles + (local_x / self->tile_width + self->top_left_x) % self->width_in_tiles; input_pixel.tile = tiles[tile_location]; input_pixel.tile_x = (input_pixel.tile % self->bitmap_width_in_tiles) * self->tile_width + local_x % self->tile_width; input_pixel.tile_y = (input_pixel.tile / self->bitmap_width_in_tiles) * self->tile_height + local_y % self->tile_height; output_pixel.pixel = 0; input_pixel.pixel = 0; // We always want to read bitmap pixels by row first and then transpose into the destination // buffer because most bitmaps are row associated. if (mp_obj_is_type(self->bitmap, &displayio_bitmap_type)) { input_pixel.pixel = common_hal_displayio_bitmap_get_pixel(self->bitmap, input_pixel.tile_x, input_pixel.tile_y); } else if (mp_obj_is_type(self->bitmap, &displayio_ondiskbitmap_type)) { input_pixel.pixel = common_hal_displayio_ondiskbitmap_get_pixel(self->bitmap, input_pixel.tile_x, input_pixel.tile_y); } output_pixel.opaque = true; if (self->pixel_shader == mp_const_none) { output_pixel.pixel = input_pixel.pixel; } else if (mp_obj_is_type(self->pixel_shader, &displayio_palette_type)) { displayio_palette_get_color(self->pixel_shader, colorspace, &input_pixel, &output_pixel); } else if (mp_obj_is_type(self->pixel_shader, &displayio_colorconverter_type)) { displayio_colorconverter_convert(self->pixel_shader, colorspace, &input_pixel, &output_pixel); } if (!output_pixel.opaque) { // A pixel is transparent so we haven't fully covered the area ourselves. full_coverage = false; } else { mask[offset / 32] |= 1 << (offset % 32); if (colorspace->depth == 16) { *(((uint16_t *)buffer) + offset) = output_pixel.pixel; } else if (colorspace->depth == 32) { *(((uint32_t *)buffer) + offset) = output_pixel.pixel; } else if (colorspace->depth == 8) { *(((uint8_t *)buffer) + offset) = output_pixel.pixel; } else if (colorspace->depth < 8) { // Reorder the offsets to pack multiple rows into a byte (meaning they share a column). if (!colorspace->pixels_in_byte_share_row) { uint16_t width = displayio_area_width(area); uint16_t row = offset / width; uint16_t col = offset % width; // Dividing by pixels_per_byte does truncated division even if we multiply it back out. offset = col * pixels_per_byte + (row / pixels_per_byte) * pixels_per_byte * width + row % pixels_per_byte; // Also useful for validating that the bitpacking worked correctly. // if (offset > displayio_area_size(area)) { // asm("bkpt"); // } } uint8_t shift = (offset % pixels_per_byte) * colorspace->depth; if (colorspace->reverse_pixels_in_byte) { // Reverse the shift by subtracting it from the leftmost shift. shift = (pixels_per_byte - 1) * colorspace->depth - shift; } ((uint8_t *)buffer)[offset / pixels_per_byte] |= output_pixel.pixel << shift; } } } } return full_coverage; } void displayio_tilegrid_finish_refresh(displayio_tilegrid_t *self) { bool first_draw = self->previous_area.x1 == self->previous_area.x2; bool hidden = self->hidden || self->hidden_by_parent; if (!first_draw && hidden) { self->previous_area.x2 = self->previous_area.x1; } else if (self->moved || first_draw) { displayio_area_copy(&self->current_area, &self->previous_area); } self->moved = false; self->full_change = false; self->partial_change = false; if (mp_obj_is_type(self->pixel_shader, &displayio_palette_type)) { displayio_palette_finish_refresh(self->pixel_shader); } else if (mp_obj_is_type(self->pixel_shader, &displayio_colorconverter_type)) { displayio_colorconverter_finish_refresh(self->pixel_shader); } if (mp_obj_is_type(self->bitmap, &displayio_bitmap_type)) { displayio_bitmap_finish_refresh(self->bitmap); } else if (mp_obj_is_type(self->bitmap, &displayio_ondiskbitmap_type)) { // OnDiskBitmap changes will trigger a complete reload so no need to // track changes. } // TODO(tannewt): We could double buffer changes to position and move them over here. // That way they won't change during a refresh and tear. } displayio_area_t *displayio_tilegrid_get_refresh_areas(displayio_tilegrid_t *self, displayio_area_t *tail) { bool first_draw = self->previous_area.x1 == self->previous_area.x2; bool hidden = self->hidden || self->hidden_by_parent; // Check hidden first because it trumps all other changes. if (hidden) { self->rendered_hidden = true; if (!first_draw) { self->previous_area.next = tail; return &self->previous_area; } else { return tail; } } else if (self->moved && !first_draw) { displayio_area_union(&self->previous_area, &self->current_area, &self->dirty_area); if (displayio_area_size(&self->dirty_area) <= 2U * self->pixel_width * self->pixel_height) { self->dirty_area.next = tail; return &self->dirty_area; } self->previous_area.next = tail; self->current_area.next = &self->previous_area; return &self->current_area; } // If we have an in-memory bitmap, then check it for modifications. if (mp_obj_is_type(self->bitmap, &displayio_bitmap_type)) { displayio_area_t *refresh_area = displayio_bitmap_get_refresh_areas(self->bitmap, tail); if (refresh_area != tail) { // Special case a TileGrid that shows a full bitmap and use its // dirty area. Copy it to ours so we can transform it. if (self->tiles_in_bitmap == 1) { displayio_area_copy(refresh_area, &self->dirty_area); self->partial_change = true; } else { self->full_change = true; } } } self->full_change = self->full_change || (mp_obj_is_type(self->pixel_shader, &displayio_palette_type) && displayio_palette_needs_refresh(self->pixel_shader)) || (mp_obj_is_type(self->pixel_shader, &displayio_colorconverter_type) && displayio_colorconverter_needs_refresh(self->pixel_shader)); if (self->full_change || first_draw) { self->current_area.next = tail; return &self->current_area; } if (self->partial_change) { int16_t x = self->x; int16_t y = self->y; if (self->absolute_transform->transpose_xy) { int16_t temp = y; y = x; x = temp; } int16_t x1 = self->dirty_area.x1; int16_t x2 = self->dirty_area.x2; if (self->flip_x) { x1 = self->pixel_width - x1; x2 = self->pixel_width - x2; } int16_t y1 = self->dirty_area.y1; int16_t y2 = self->dirty_area.y2; if (self->flip_y) { y1 = self->pixel_height - y1; y2 = self->pixel_height - y2; } if (self->transpose_xy != self->absolute_transform->transpose_xy) { int16_t temp1 = y1, temp2 = y2; y1 = x1; x1 = temp1; y2 = x2; x2 = temp2; } self->dirty_area.x1 = self->absolute_transform->x + self->absolute_transform->dx * (x + x1); self->dirty_area.y1 = self->absolute_transform->y + self->absolute_transform->dy * (y + y1); self->dirty_area.x2 = self->absolute_transform->x + self->absolute_transform->dx * (x + x2); self->dirty_area.y2 = self->absolute_transform->y + self->absolute_transform->dy * (y + y2); if (self->dirty_area.y2 < self->dirty_area.y1) { int16_t temp = self->dirty_area.y2; self->dirty_area.y2 = self->dirty_area.y1; self->dirty_area.y1 = temp; } if (self->dirty_area.x2 < self->dirty_area.x1) { int16_t temp = self->dirty_area.x2; self->dirty_area.x2 = self->dirty_area.x1; self->dirty_area.x1 = temp; } self->dirty_area.next = tail; return &self->dirty_area; } return tail; }