/* * This file is part of the MicroPython project, http://micropython.org/ * * This file provides functions for configuring the clocks. * * The MIT License (MIT) * * Copyright (c) 2022 Robert Hammelrath * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "samd_soc.h" static uint32_t cpu_freq = CPU_FREQ; static uint32_t apb_freq = APB_FREQ; #if defined(MCU_SAMD21) int sercom_gclk_id[] = { GCLK_CLKCTRL_ID_SERCOM0_CORE, GCLK_CLKCTRL_ID_SERCOM1_CORE, GCLK_CLKCTRL_ID_SERCOM2_CORE, GCLK_CLKCTRL_ID_SERCOM3_CORE, GCLK_CLKCTRL_ID_SERCOM4_CORE, GCLK_CLKCTRL_ID_SERCOM5_CORE }; #elif defined(MCU_SAMD51) int sercom_gclk_id[] = { SERCOM0_GCLK_ID_CORE, SERCOM1_GCLK_ID_CORE, SERCOM2_GCLK_ID_CORE, SERCOM3_GCLK_ID_CORE, SERCOM4_GCLK_ID_CORE, SERCOM5_GCLK_ID_CORE, #if defined(SERCOM7_GCLK_ID_CORE) SERCOM6_GCLK_ID_CORE, SERCOM7_GCLK_ID_CORE, #endif }; #endif uint32_t get_cpu_freq(void) { return cpu_freq; } uint32_t get_apb_freq(void) { return apb_freq; } #if defined(MCU_SAMD21) void set_cpu_freq(uint32_t cpu_freq_arg) { cpu_freq = cpu_freq_arg; } #elif defined(MCU_SAMD51) void set_cpu_freq(uint32_t cpu_freq_arg) { cpu_freq = cpu_freq_arg; // Setup GCLK0 for 48MHz as default state to keep the MCU running during config change. GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL0) { } // Setup DPLL0 for 120 MHz // first: disable DPLL0 in case it is running OSCCTRL->Dpll[0].DPLLCTRLA.bit.ENABLE = 0; while (OSCCTRL->Dpll[0].DPLLSYNCBUSY.bit.ENABLE == 1) { } // Now configure the registers OSCCTRL->Dpll[0].DPLLCTRLB.reg = OSCCTRL_DPLLCTRLB_DIV(1) | OSCCTRL_DPLLCTRLB_LBYPASS | OSCCTRL_DPLLCTRLB_REFCLK(0) | OSCCTRL_DPLLCTRLB_WUF | OSCCTRL_DPLLCTRLB_FILTER(0x01); uint32_t div = cpu_freq / DPLLx_REF_FREQ; uint32_t frac = (cpu_freq - div * DPLLx_REF_FREQ) / (DPLLx_REF_FREQ / 32); OSCCTRL->Dpll[0].DPLLRATIO.reg = (frac << 16) + div - 1; // enable it again OSCCTRL->Dpll[0].DPLLCTRLA.reg = OSCCTRL_DPLLCTRLA_ENABLE | OSCCTRL_DPLLCTRLA_RUNSTDBY; // Per errata 2.13.1 while (!(OSCCTRL->Dpll[0].DPLLSTATUS.bit.CLKRDY == 1)) { } // Setup GCLK0 for DPLL0 output (48 or 48-200MHz) GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DPLL0; while (GCLK->SYNCBUSY.bit.GENCTRL0) { } } #endif void init_clocks(uint32_t cpu_freq) { #if defined(MCU_SAMD21) // SAMD21 Clock settings // GCLK0: 48MHz from DFLL open loop mode or closed loop mode from 32k Crystal // GCLK1: 32768 Hz from 32K ULP or 32k Crystal // GCLK2: 48MHz from DFLL for Peripherals // GCLK3: 1Mhz for the us-counter (TC3/TC4) // GCLK8: 1kHz clock for WDT NVMCTRL->CTRLB.bit.MANW = 1; // errata "Spurious Writes" NVMCTRL->CTRLB.bit.RWS = 1; // 1 read wait state for 48MHz #if MICROPY_HW_XOSC32K // Set up OSC32K according datasheet 17.6.3 SYSCTRL->XOSC32K.reg = SYSCTRL_XOSC32K_STARTUP(0x3) | SYSCTRL_XOSC32K_EN32K | SYSCTRL_XOSC32K_XTALEN; SYSCTRL->XOSC32K.bit.ENABLE = 1; while (SYSCTRL->PCLKSR.bit.XOSC32KRDY == 0) { } // Set up the DFLL48 according to the data sheet 17.6.7.1.2 // Step 1: Set up the reference clock // Connect the OSC32K via GCLK1 to the DFLL input and for further use. GCLK->GENDIV.reg = GCLK_GENDIV_ID(1) | GCLK_GENDIV_DIV(1); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K | GCLK_GENCTRL_ID(1); while (GCLK->STATUS.bit.SYNCBUSY) { } GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID_DFLL48 | GCLK_CLKCTRL_GEN_GCLK1 | GCLK_CLKCTRL_CLKEN; // Enable access to the DFLLCTRL reg acc. to Errata 1.2.1 SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_ENABLE; while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) { } // Step 2: Set the coarse and fine values. // The coarse setting will be taken from the calibration data. So the value used here // does not matter. Get the coarse value from the calib data. In case it is not set, // set a midrange value. uint32_t coarse = (*((uint32_t *)FUSES_DFLL48M_COARSE_CAL_ADDR) & FUSES_DFLL48M_COARSE_CAL_Msk) >> FUSES_DFLL48M_COARSE_CAL_Pos; if (coarse == 0x3f) { coarse = 0x1f; } SYSCTRL->DFLLVAL.reg = SYSCTRL_DFLLVAL_COARSE(coarse) | SYSCTRL_DFLLVAL_FINE(512); while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) { } // Step 3: Set the multiplication values. The offset of 16384 to the freq is for rounding. SYSCTRL->DFLLMUL.reg = SYSCTRL_DFLLMUL_MUL((CPU_FREQ + 16384) / 32768) | SYSCTRL_DFLLMUL_FSTEP(1) | SYSCTRL_DFLLMUL_CSTEP(1); while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) { } // Step 4: Start the DFLL and wait for the PLL lock. We just wait for the fine lock, since // coarse adjusting is bypassed. SYSCTRL->DFLLCTRL.reg |= SYSCTRL_DFLLCTRL_MODE | SYSCTRL_DFLLCTRL_WAITLOCK | SYSCTRL_DFLLCTRL_BPLCKC | SYSCTRL_DFLLCTRL_ENABLE; while (SYSCTRL->PCLKSR.bit.DFLLLCKF == 0) { } #else // MICROPY_HW_XOSC32K // Enable DFLL48M SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_ENABLE; while (!SYSCTRL->PCLKSR.bit.DFLLRDY) { } SYSCTRL->DFLLMUL.reg = SYSCTRL_DFLLMUL_CSTEP(1) | SYSCTRL_DFLLMUL_FSTEP(1) | SYSCTRL_DFLLMUL_MUL(48000); uint32_t coarse = (*((uint32_t *)FUSES_DFLL48M_COARSE_CAL_ADDR) & FUSES_DFLL48M_COARSE_CAL_Msk) >> FUSES_DFLL48M_COARSE_CAL_Pos; if (coarse == 0x3f) { coarse = 0x1f; } SYSCTRL->DFLLVAL.reg = SYSCTRL_DFLLVAL_COARSE(coarse) | SYSCTRL_DFLLVAL_FINE(512); SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_CCDIS | SYSCTRL_DFLLCTRL_USBCRM | SYSCTRL_DFLLCTRL_MODE | SYSCTRL_DFLLCTRL_ENABLE; while (!SYSCTRL->PCLKSR.bit.DFLLRDY) { } // Enable 32768 Hz on GCLK1 for consistency GCLK->GENDIV.reg = GCLK_GENDIV_ID(1) | GCLK_GENDIV_DIV(48016384 / 32768); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(1); while (GCLK->STATUS.bit.SYNCBUSY) { } #endif // MICROPY_HW_XOSC32K // Enable GCLK output: 48M on both CCLK0 and GCLK2 GCLK->GENDIV.reg = GCLK_GENDIV_ID(0) | GCLK_GENDIV_DIV(1); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(0); while (GCLK->STATUS.bit.SYNCBUSY) { } GCLK->GENDIV.reg = GCLK_GENDIV_ID(2) | GCLK_GENDIV_DIV(1); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(2); while (GCLK->STATUS.bit.SYNCBUSY) { } // Enable GCLK output: 1MHz on GCLK3 for TC3 GCLK->GENDIV.reg = GCLK_GENDIV_ID(3) | GCLK_GENDIV_DIV(48); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(3); while (GCLK->STATUS.bit.SYNCBUSY) { } // Set GCLK8 to 1 kHz. GCLK->GENDIV.reg = GCLK_GENDIV_ID(8) | GCLK_GENDIV_DIV(32); GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K | GCLK_GENCTRL_ID(8); while (GCLK->STATUS.bit.SYNCBUSY) { } #elif defined(MCU_SAMD51) // SAMD51 clock settings // GCLK0: 48MHz from DFLL48M or 48 - 200 MHz from DPLL0 (SAMD51) // GCLK1: DPLLx_REF_FREQ 32768 Hz from 32KULP or 32k Crystal // GCLK2: 48MHz from DFLL48M for Peripheral devices // GCLK3: 16Mhz for the us-counter (TC0/TC1) // DPLL0: 48 - 200 MHz // Steps to set up clocks: // Reset Clocks // Switch GCLK0 to DFLL 48MHz // Setup 32768 Hz source and DFLL48M in closed loop mode, if a crystal is present. // Setup GCLK1 to the DPLL0 Reference freq. of 32768 Hz // Setup GCLK1 to drive peripheral channel 1 // Setup DPLL0 to 120MHz // Setup GCLK0 to 120MHz // Setup GCLK2 to 48MHz for Peripherals // Setup GCLK3 to 8MHz for TC0/TC1 // Setup GCLK0 for 48MHz as default state to keep the MCU running during config change. GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL0) { } #if MICROPY_HW_XOSC32K // OSCILLATOR CONTROL // Setup XOSC32K OSC32KCTRL->INTFLAG.reg = OSC32KCTRL_INTFLAG_XOSC32KRDY | OSC32KCTRL_INTFLAG_XOSC32KFAIL; OSC32KCTRL->XOSC32K.bit.CGM = OSC32KCTRL_XOSC32K_CGM_HS_Val; OSC32KCTRL->XOSC32K.bit.XTALEN = 1; // 0: Generator 1: Crystal OSC32KCTRL->XOSC32K.bit.EN32K = 1; OSC32KCTRL->XOSC32K.bit.ONDEMAND = 0; OSC32KCTRL->XOSC32K.bit.RUNSTDBY = 1; OSC32KCTRL->XOSC32K.bit.STARTUP = 4; OSC32KCTRL->CFDCTRL.bit.CFDEN = 1; // Fall back to internal Osc on crystal fail OSC32KCTRL->XOSC32K.bit.ENABLE = 1; // make sure osc32kcrtl is ready while (OSC32KCTRL->STATUS.bit.XOSC32KRDY == 0) { } // Setup GCLK1 for 32kHz crystal GCLK->GENCTRL[1].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K; while (GCLK->SYNCBUSY.bit.GENCTRL1) { } // Set-up the DFLL48M in closed loop mode with input from the 32kHz crystal // Step 1: Peripheral channel 0 is driven by GCLK1 and it feeds DFLL48M GCLK->PCHCTRL[0].reg = GCLK_PCHCTRL_GEN_GCLK1 | GCLK_PCHCTRL_CHEN; while (GCLK->PCHCTRL[0].bit.CHEN == 0) { } // Step 2: Set the multiplication values. The offset of 16384 to the freq is for rounding. OSCCTRL->DFLLMUL.reg = OSCCTRL_DFLLMUL_MUL((APB_FREQ + DPLLx_REF_FREQ / 2) / DPLLx_REF_FREQ) | OSCCTRL_DFLLMUL_FSTEP(1) | OSCCTRL_DFLLMUL_CSTEP(1); while (OSCCTRL->DFLLSYNC.bit.DFLLMUL == 1) { } // Step 3: Set the mode to closed loop OSCCTRL->DFLLCTRLB.reg = OSCCTRL_DFLLCTRLB_BPLCKC | OSCCTRL_DFLLCTRLB_MODE; while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) { } // Wait for lock fine while (OSCCTRL->STATUS.bit.DFLLLCKF == 0) { } // Step 4: Start the DFLL. OSCCTRL->DFLLCTRLA.reg = OSCCTRL_DFLLCTRLA_RUNSTDBY | OSCCTRL_DFLLCTRLA_ENABLE; while (OSCCTRL->DFLLSYNC.bit.ENABLE == 1) { } #else // MICROPY_HW_XOSC32K // Set GCLK1 to DPLL0_REF_FREQ as defined in mpconfigboard.h (e.g. 32768 Hz) GCLK->GENCTRL[1].reg = ((APB_FREQ + DPLLx_REF_FREQ / 2) / DPLLx_REF_FREQ) << GCLK_GENCTRL_DIV_Pos | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL1) { } #endif // MICROPY_HW_XOSC32K // Peripheral channel 1 is driven by GCLK1 and it feeds DPLL0 GCLK->PCHCTRL[1].reg = GCLK_PCHCTRL_GEN_GCLK1 | GCLK_PCHCTRL_CHEN; while (GCLK->PCHCTRL[1].bit.CHEN == 0) { } set_cpu_freq(cpu_freq); apb_freq = APB_FREQ; // To be changed if CPU_FREQ < 48M // Setup GCLK2 for DPLL1 output (48 MHz) GCLK->GENCTRL[2].reg = GCLK_GENCTRL_DIV(1) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL2) { } // Setup GCLK3 for 8MHz, Used for TC0/1 counter GCLK->GENCTRL[3].reg = GCLK_GENCTRL_DIV(6) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL3) { } #endif // defined(MCU_SAMD51) } void enable_sercom_clock(int id) { // Next: Set up the clocks #if defined(MCU_SAMD21) // Enable synchronous clock. The bits are nicely arranged PM->APBCMASK.reg |= 0x04 << id; // Select multiplexer generic clock source and enable. GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2 | sercom_gclk_id[id]; // Wait while it updates synchronously. while (GCLK->STATUS.bit.SYNCBUSY) { } #elif defined(MCU_SAMD51) GCLK->PCHCTRL[sercom_gclk_id[id]].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN_GCLK2; // no easy way to set the clocks, except enabling all of them switch (id) { case 0: MCLK->APBAMASK.bit.SERCOM0_ = 1; break; case 1: MCLK->APBAMASK.bit.SERCOM1_ = 1; break; case 2: MCLK->APBBMASK.bit.SERCOM2_ = 1; break; case 3: MCLK->APBBMASK.bit.SERCOM3_ = 1; break; case 4: MCLK->APBDMASK.bit.SERCOM4_ = 1; break; case 5: MCLK->APBDMASK.bit.SERCOM5_ = 1; break; #ifdef SERCOM7_GCLK_ID_CORE case 6: MCLK->APBDMASK.bit.SERCOM6_ = 1; break; case 7: MCLK->APBDMASK.bit.SERCOM7_ = 1; break; #endif } #endif }