/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/parsenum.h" #include "py/smallint.h" #include "py/objint.h" #include "py/objstr.h" #include "py/runtime.h" #include "py/binary.h" #include "supervisor/shared/translate.h" #if MICROPY_PY_BUILTINS_FLOAT #include #endif // This dispatcher function is expected to be independent of the implementation of long int STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { (void)type_in; mp_arg_check_num(n_args, kw_args, 0, 2, false); switch (n_args) { case 0: return MP_OBJ_NEW_SMALL_INT(0); case 1: if (MP_OBJ_IS_INT(args[0])) { // already an int (small or long), just return it return args[0]; } else if (MP_OBJ_IS_STR_OR_BYTES(args[0])) { // a string, parse it size_t l; const char *s = mp_obj_str_get_data(args[0], &l); return mp_parse_num_integer(s, l, 0, NULL); #if MICROPY_PY_BUILTINS_FLOAT } else if (mp_obj_is_float(args[0])) { return mp_obj_new_int_from_float(mp_obj_float_get(args[0])); #endif } else { // try to convert to small int (eg from bool) return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0])); } case 2: default: { // should be a string, parse it // TODO proper error checking of argument types size_t l; const char *s = mp_obj_str_get_data(args[0], &l); return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL); } } } #if MICROPY_PY_BUILTINS_FLOAT typedef enum { MP_FP_CLASS_FIT_SMALLINT, MP_FP_CLASS_FIT_LONGINT, MP_FP_CLASS_OVERFLOW } mp_fp_as_int_class_t; STATIC mp_fp_as_int_class_t mp_classify_fp_as_int(mp_float_t val) { union { mp_float_t f; #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT uint32_t i; #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE uint32_t i[2]; #endif } u = {val}; uint32_t e; #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT e = u.i; #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE e = u.i[MP_ENDIANNESS_LITTLE]; #endif #define MP_FLOAT_SIGN_SHIFT_I32 ((MP_FLOAT_FRAC_BITS + MP_FLOAT_EXP_BITS) % 32) #define MP_FLOAT_EXP_SHIFT_I32 (MP_FLOAT_FRAC_BITS % 32) if (e & (1U << MP_FLOAT_SIGN_SHIFT_I32)) { #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE e |= u.i[MP_ENDIANNESS_BIG] != 0; #endif if ((e & ~(1 << MP_FLOAT_SIGN_SHIFT_I32)) == 0) { // handle case of -0 (when sign is set but rest of bits are zero) e = 0; } else { e += ((1 << MP_FLOAT_EXP_BITS) - 1) << MP_FLOAT_EXP_SHIFT_I32; } } else { e &= ~((1 << MP_FLOAT_EXP_SHIFT_I32) - 1); } // 8 * sizeof(uintptr_t) counts the number of bits for a small int // TODO provide a way to configure this properly if (e <= ((8 * sizeof(uintptr_t) + MP_FLOAT_EXP_BIAS - 3) << MP_FLOAT_EXP_SHIFT_I32)) { return MP_FP_CLASS_FIT_SMALLINT; } #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG if (e <= (((sizeof(long long) * BITS_PER_BYTE) + MP_FLOAT_EXP_BIAS - 2) << MP_FLOAT_EXP_SHIFT_I32)) { return MP_FP_CLASS_FIT_LONGINT; } #endif #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ return MP_FP_CLASS_FIT_LONGINT; #else return MP_FP_CLASS_OVERFLOW; #endif } #undef MP_FLOAT_SIGN_SHIFT_I32 #undef MP_FLOAT_EXP_SHIFT_I32 mp_obj_t mp_obj_new_int_from_float(mp_float_t val) { int cl = fpclassify(val); if (cl == FP_INFINITE) { mp_raise_OverflowError_varg(translate("can't convert %s to %s"), "inf", "int"); } else if (cl == FP_NAN) { mp_raise_ValueError_varg(translate("can't convert %s to %s"), "NaN", "int"); } else { mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val); if (icl == MP_FP_CLASS_FIT_SMALLINT) { return MP_OBJ_NEW_SMALL_INT((mp_int_t)val); #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ } else { mp_obj_int_t *o = mp_obj_int_new_mpz(); mpz_set_from_float(&o->mpz, val); return MP_OBJ_FROM_PTR(o); } #else #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG } else if (icl == MP_FP_CLASS_FIT_LONGINT) { return mp_obj_new_int_from_ll((long long)val); #endif } else { mp_raise_ValueError(translate("float too big")); } #endif } } #endif #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG typedef mp_longint_impl_t fmt_int_t; typedef unsigned long long fmt_uint_t; #else typedef mp_int_t fmt_int_t; typedef mp_uint_t fmt_uint_t; #endif void mp_obj_int_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { (void)kind; // The size of this buffer is rather arbitrary. If it's not large // enough, a dynamic one will be allocated. char stack_buf[sizeof(fmt_int_t) * 4]; char *buf = stack_buf; size_t buf_size = sizeof(stack_buf); size_t fmt_size; char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0'); mp_print_str(print, str); if (buf != stack_buf) { m_del(char, buf, buf_size); } } STATIC const uint8_t log_base2_floor[] = { 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, /* if needed, these are the values for higher bases 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5 */ }; size_t mp_int_format_size(size_t num_bits, int base, const char *prefix, char comma) { assert(2 <= base && base <= 16); size_t num_digits = num_bits / log_base2_floor[base - 1] + 1; size_t num_commas = comma ? num_digits / 3 : 0; size_t prefix_len = prefix ? strlen(prefix) : 0; return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte } // This routine expects you to pass in a buffer and size (in *buf and *buf_size). // If, for some reason, this buffer is too small, then it will allocate a // buffer and return the allocated buffer and size in *buf and *buf_size. It // is the callers responsibility to free this allocated buffer. // // The resulting formatted string will be returned from this function and the // formatted size will be in *fmt_size. char *mp_obj_int_formatted(char **buf, size_t *buf_size, size_t *fmt_size, mp_const_obj_t self_in, int base, const char *prefix, char base_char, char comma) { fmt_int_t num; #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE // Only have small ints; get the integer value to format. num = MP_OBJ_SMALL_INT_VALUE(self_in); #else if (MP_OBJ_IS_SMALL_INT(self_in)) { // A small int; get the integer value to format. num = MP_OBJ_SMALL_INT_VALUE(self_in); } else { assert(MP_OBJ_IS_TYPE(self_in, &mp_type_int)); // Not a small int. #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG const mp_obj_int_t *self = self_in; // Get the value to format; mp_obj_get_int truncates to mp_int_t. num = self->val; #else // Delegate to the implementation for the long int. return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma); #endif } #endif char sign = '\0'; if (num < 0) { num = -num; sign = '-'; } size_t needed_size = mp_int_format_size(sizeof(fmt_int_t) * 8, base, prefix, comma); if (needed_size > *buf_size) { *buf = m_new(char, needed_size); *buf_size = needed_size; } char *str = *buf; char *b = str + needed_size; *(--b) = '\0'; char *last_comma = b; if (num == 0) { *(--b) = '0'; } else { do { // The cast to fmt_uint_t is because num is positive and we want unsigned arithmetic int c = (fmt_uint_t)num % base; num = (fmt_uint_t)num / base; if (c >= 10) { c += base_char - 10; } else { c += '0'; } *(--b) = c; if (comma && num != 0 && b > str && (last_comma - b) == 3) { *(--b) = comma; last_comma = b; } } while (b > str && num != 0); } if (prefix) { size_t prefix_len = strlen(prefix); char *p = b - prefix_len; if (p > str) { b = p; while (*prefix) { *p++ = *prefix++; } } } if (sign && b > str) { *(--b) = sign; } *fmt_size = *buf + needed_size - b - 1; return b; } #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE void mp_obj_int_buffer_overflow_check(mp_obj_t self_in, size_t nbytes, bool is_signed) { if (is_signed) { // self must be < 2**(bits - 1) mp_obj_t edge = mp_binary_op(MP_BINARY_OP_INPLACE_LSHIFT, mp_obj_new_int(1), mp_obj_new_int(nbytes * 8 - 1)); if (mp_binary_op(MP_BINARY_OP_LESS, self_in, edge) == mp_const_true) { // and >= -2**(bits - 1) edge = mp_unary_op(MP_UNARY_OP_NEGATIVE, edge); if (mp_binary_op(MP_BINARY_OP_MORE_EQUAL, self_in, edge) == mp_const_true) { return; } } } else { // self must be >= 0 if (mp_obj_int_sign(self_in) >= 0) { // and < 2**(bits) mp_obj_t edge = mp_binary_op(MP_BINARY_OP_INPLACE_LSHIFT, mp_obj_new_int(1), mp_obj_new_int(nbytes * 8)); if (mp_binary_op(MP_BINARY_OP_LESS, self_in, edge) == mp_const_true) { return; } } } mp_raise_OverflowError_varg(translate("value must fit in %d byte(s)"), nbytes); } #endif // MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE void mp_small_int_buffer_overflow_check(mp_int_t val, size_t nbytes, bool is_signed) { // Fast path for zero. if (val == 0) { return; } // Trying to store negative values in unsigned bytes falls through to failure. if (is_signed || val >= 0) { if (nbytes >= sizeof(val)) { // All non-negative N bit signed integers fit in an unsigned N bit integer. // This case prevents shifting too far below. return; } if (is_signed) { mp_int_t edge = ((mp_int_t)1 << (nbytes * 8 - 1)); if (-edge <= val && val < edge) { return; } // Out of range, fall through to failure. } else { // Unsigned. We already know val >= 0. mp_int_t edge = ((mp_int_t)1 << (nbytes * 8)); if (val < edge) { return; } } // Fall through to failure. } mp_raise_OverflowError_varg(translate("value must fit in %d byte(s)"), nbytes); } #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE int mp_obj_int_sign(mp_obj_t self_in) { mp_int_t val = mp_obj_get_int(self_in); if (val < 0) { return -1; } else if (val > 0) { return 1; } else { return 0; } } // This is called for operations on SMALL_INT that are not handled by mp_unary_op mp_obj_t mp_obj_int_unary_op(mp_unary_op_t op, mp_obj_t o_in) { return MP_OBJ_NULL; // op not supported } // This is called for operations on SMALL_INT that are not handled by mp_binary_op mp_obj_t mp_obj_int_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in); } // This is called only with strings whose value doesn't fit in SMALL_INT mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base) { mp_raise_msg(&mp_type_OverflowError, translate("long int not supported in this build")); return mp_const_none; } // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT) mp_obj_t mp_obj_new_int_from_ll(long long val) { mp_raise_msg(&mp_type_OverflowError, translate("small int overflow")); return mp_const_none; } // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT) mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) { mp_raise_msg(&mp_type_OverflowError, translate("small int overflow")); return mp_const_none; } mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) { // SMALL_INT accepts only signed numbers, so make sure the input // value fits completely in the small-int positive range. if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) { return MP_OBJ_NEW_SMALL_INT(value); } mp_raise_msg(&mp_type_OverflowError, translate("small int overflow")); return mp_const_none; } mp_obj_t mp_obj_new_int(mp_int_t value) { if (MP_SMALL_INT_FITS(value)) { return MP_OBJ_NEW_SMALL_INT(value); } mp_raise_msg(&mp_type_OverflowError, translate("small int overflow")); return mp_const_none; } mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) { return MP_OBJ_SMALL_INT_VALUE(self_in); } mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) { return MP_OBJ_SMALL_INT_VALUE(self_in); } #endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE // This dispatcher function is expected to be independent of the implementation of long int // It handles the extra cases for integer-like arithmetic mp_obj_t mp_obj_int_binary_op_extra_cases(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { if (rhs_in == mp_const_false) { // false acts as 0 return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0)); } else if (rhs_in == mp_const_true) { // true acts as 0 return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1)); } else if (op == MP_BINARY_OP_MULTIPLY) { if (MP_OBJ_IS_STR_OR_BYTES(rhs_in) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_list)) { // multiply is commutative for these types, so delegate to them return mp_binary_op(op, rhs_in, lhs_in); } } return MP_OBJ_NULL; // op not supported } // this is a classmethod STATIC mp_obj_t int_from_bytes(size_t n_args, const mp_obj_t *args) { // TODO: Support signed param (assumes signed=False at the moment) (void)n_args; // get the buffer info mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ); const byte* buf = (const byte*)bufinfo.buf; int delta = 1; if (args[2] == MP_OBJ_NEW_QSTR(MP_QSTR_little)) { buf += bufinfo.len - 1; delta = -1; } mp_uint_t value = 0; size_t len = bufinfo.len; for (; len--; buf += delta) { #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE if (value > (MP_SMALL_INT_MAX >> 8)) { // Result will overflow a small-int so construct a big-int return mp_obj_int_from_bytes_impl(args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little), bufinfo.len, bufinfo.buf); } #endif value = (value << 8) | *buf; } return mp_obj_new_int_from_uint(value); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 3, 4, int_from_bytes); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, MP_ROM_PTR(&int_from_bytes_fun_obj)); STATIC mp_obj_t int_to_bytes(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_length, ARG_byteorder, ARG_signed }; static const mp_arg_t allowed_args[] = { { MP_QSTR_length, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_byteorder, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_signed, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_int_t len = args[ARG_length].u_int; if (len < 0) { mp_raise_ValueError(NULL); } mp_obj_t self = pos_args[0]; bool big_endian = args[ARG_byteorder].u_obj != MP_OBJ_NEW_QSTR(MP_QSTR_little); bool signed_ = args[ARG_signed].u_bool; vstr_t vstr; vstr_init_len(&vstr, len); byte *data = (byte*)vstr.buf; memset(data, 0, len); #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE if (!MP_OBJ_IS_SMALL_INT(self)) { mp_obj_int_buffer_overflow_check(self, len, signed_); mp_obj_int_to_bytes_impl(self, big_endian, len, data); } else #endif { mp_int_t val = MP_OBJ_SMALL_INT_VALUE(self); // Small int checking is separate, to be fast. mp_small_int_buffer_overflow_check(val, len, signed_); size_t l = MIN((size_t)len, sizeof(val)); if (val < 0) { // Sign extend negative numbers. memset(data, -1, len); } mp_binary_set_int(l, big_endian, data + (big_endian ? (len - l) : 0), val); } return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(int_to_bytes_obj, 3, int_to_bytes); STATIC const mp_rom_map_elem_t int_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_from_bytes), MP_ROM_PTR(&int_from_bytes_obj) }, { MP_ROM_QSTR(MP_QSTR_to_bytes), MP_ROM_PTR(&int_to_bytes_obj) }, }; STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table); const mp_obj_type_t mp_type_int = { { &mp_type_type }, .name = MP_QSTR_int, .print = mp_obj_int_print, .make_new = mp_obj_int_make_new, .unary_op = mp_obj_int_unary_op, .binary_op = mp_obj_int_binary_op, .locals_dict = (mp_obj_dict_t*)&int_locals_dict, };