/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "mpconfig.h" #include "misc.h" // wrapper around everything in this file #if MICROPY_EMIT_X86 #include "asmx86.h" /* all offsets are measured in multiples of 4 bytes */ #define WORD_SIZE (4) #define OPCODE_NOP (0x90) #define OPCODE_PUSH_R32 (0x50) //#define OPCODE_PUSH_I32 (0x68) //#define OPCODE_PUSH_M32 (0xff) /* /6 */ #define OPCODE_POP_R32 (0x58) #define OPCODE_RET (0xc3) //#define OPCODE_MOV_I8_TO_R8 (0xb0) /* +rb */ #define OPCODE_MOV_I32_TO_R32 (0xb8) //#define OPCODE_MOV_I32_TO_RM32 (0xc7) #define OPCODE_MOV_R32_TO_RM32 (0x89) #define OPCODE_MOV_RM32_TO_R32 (0x8b) #define OPCODE_LEA_MEM_TO_R32 (0x8d) /* /r */ #define OPCODE_XOR_R32_TO_RM32 (0x31) /* /r */ #define OPCODE_ADD_R32_TO_RM32 (0x01) #define OPCODE_ADD_I32_TO_RM32 (0x81) /* /0 */ #define OPCODE_ADD_I8_TO_RM32 (0x83) /* /0 */ //#define OPCODE_SUB_R32_FROM_RM32 (0x29) #define OPCODE_SUB_I32_FROM_RM32 (0x81) /* /5 */ #define OPCODE_SUB_I8_FROM_RM32 (0x83) /* /5 */ //#define OPCODE_SHL_RM32_BY_I8 (0xc1) /* /4 */ //#define OPCODE_SHR_RM32_BY_I8 (0xc1) /* /5 */ //#define OPCODE_SAR_RM32_BY_I8 (0xc1) /* /7 */ //#define OPCODE_CMP_I32_WITH_RM32 (0x81) /* /7 */ //#define OPCODE_CMP_I8_WITH_RM32 (0x83) /* /7 */ #define OPCODE_CMP_R32_WITH_RM32 (0x39) //#define OPCODE_CMP_RM32_WITH_R32 (0x3b) #define OPCODE_TEST_R8_WITH_RM8 (0x84) /* /r */ #define OPCODE_JMP_REL8 (0xeb) #define OPCODE_JMP_REL32 (0xe9) #define OPCODE_JCC_REL8 (0x70) /* | jcc type */ #define OPCODE_JCC_REL32_A (0x0f) #define OPCODE_JCC_REL32_B (0x80) /* | jcc type */ #define OPCODE_SETCC_RM8_A (0x0f) #define OPCODE_SETCC_RM8_B (0x90) /* | jcc type, /0 */ #define OPCODE_CALL_REL32 (0xe8) #define OPCODE_CALL_RM32 (0xff) /* /2 */ #define OPCODE_LEAVE (0xc9) #define MODRM_R32(x) ((x) << 3) #define MODRM_RM_DISP0 (0x00) #define MODRM_RM_DISP8 (0x40) #define MODRM_RM_DISP32 (0x80) #define MODRM_RM_REG (0xc0) #define MODRM_RM_R32(x) (x) #define IMM32_L0(x) ((x) & 0xff) #define IMM32_L1(x) (((x) >> 8) & 0xff) #define IMM32_L2(x) (((x) >> 16) & 0xff) #define IMM32_L3(x) (((x) >> 24) & 0xff) #define SIGNED_FIT8(x) (((x) & 0xffffff80) == 0) || (((x) & 0xffffff80) == 0xffffff80) struct _asm_x86_t { uint pass; mp_uint_t code_offset; mp_uint_t code_size; byte *code_base; byte dummy_data[8]; uint max_num_labels; int *label_offsets; int num_locals; }; asm_x86_t *asm_x86_new(mp_uint_t max_num_labels) { asm_x86_t *as; as = m_new0(asm_x86_t, 1); as->max_num_labels = max_num_labels; as->label_offsets = m_new(int, max_num_labels); return as; } void asm_x86_free(asm_x86_t *as, bool free_code) { if (free_code) { MP_PLAT_FREE_EXEC(as->code_base, as->code_size); } m_del_obj(asm_x86_t, as); } void asm_x86_start_pass(asm_x86_t *as, mp_uint_t pass) { as->pass = pass; as->code_offset = 0; if (pass == ASM_X86_PASS_COMPUTE) { // reset all labels memset(as->label_offsets, -1, as->max_num_labels * sizeof(int)); } } void asm_x86_end_pass(asm_x86_t *as) { if (as->pass == ASM_X86_PASS_COMPUTE) { MP_PLAT_ALLOC_EXEC(as->code_offset, (void**) &as->code_base, &as->code_size); if(as->code_base == NULL) { assert(0); } } } // all functions must go through this one to emit bytes STATIC byte *asm_x86_get_cur_to_write_bytes(asm_x86_t *as, int num_bytes_to_write) { //printf("emit %d\n", num_bytes_to_write); if (as->pass < ASM_X86_PASS_EMIT) { as->code_offset += num_bytes_to_write; return as->dummy_data; } else { assert(as->code_offset + num_bytes_to_write <= as->code_size); byte *c = as->code_base + as->code_offset; as->code_offset += num_bytes_to_write; return c; } } mp_uint_t asm_x86_get_code_size(asm_x86_t *as) { return as->code_size; } void *asm_x86_get_code(asm_x86_t *as) { return as->code_base; } STATIC void asm_x86_write_byte_1(asm_x86_t *as, byte b1) { byte* c = asm_x86_get_cur_to_write_bytes(as, 1); c[0] = b1; } STATIC void asm_x86_write_byte_2(asm_x86_t *as, byte b1, byte b2) { byte* c = asm_x86_get_cur_to_write_bytes(as, 2); c[0] = b1; c[1] = b2; } STATIC void asm_x86_write_byte_3(asm_x86_t *as, byte b1, byte b2, byte b3) { byte* c = asm_x86_get_cur_to_write_bytes(as, 3); c[0] = b1; c[1] = b2; c[2] = b3; } STATIC void asm_x86_write_word32(asm_x86_t *as, int w32) { byte* c = asm_x86_get_cur_to_write_bytes(as, 4); c[0] = IMM32_L0(w32); c[1] = IMM32_L1(w32); c[2] = IMM32_L2(w32); c[3] = IMM32_L3(w32); } STATIC void asm_x86_write_r32_disp(asm_x86_t *as, int r32, int disp_r32, int disp_offset) { assert(disp_r32 != REG_ESP); if (disp_offset == 0 && disp_r32 != REG_EBP) { asm_x86_write_byte_1(as, MODRM_R32(r32) | MODRM_RM_DISP0 | MODRM_RM_R32(disp_r32)); } else if (SIGNED_FIT8(disp_offset)) { asm_x86_write_byte_2(as, MODRM_R32(r32) | MODRM_RM_DISP8 | MODRM_RM_R32(disp_r32), IMM32_L0(disp_offset)); } else { asm_x86_write_byte_1(as, MODRM_R32(r32) | MODRM_RM_DISP32 | MODRM_RM_R32(disp_r32)); asm_x86_write_word32(as, disp_offset); } } STATIC void asm_x86_nop(asm_x86_t *as) { asm_x86_write_byte_1(as, OPCODE_NOP); } STATIC void asm_x86_push_r32(asm_x86_t *as, int src_r32) { asm_x86_write_byte_1(as, OPCODE_PUSH_R32 | src_r32); } #if 0 void asm_x86_push_i32(asm_x86_t *as, int src_i32) { asm_x86_write_byte_1(as, OPCODE_PUSH_I32); asm_x86_write_word32(as, src_i32); } void asm_x86_push_disp(asm_x86_t *as, int src_r32, int src_offset) { asm_x86_write_byte_1(as, OPCODE_PUSH_M32); asm_x86_write_r32_disp(as, 6, src_r32, src_offset); } #endif STATIC void asm_x86_pop_r32(asm_x86_t *as, int dest_r32) { asm_x86_write_byte_1(as, OPCODE_POP_R32 | dest_r32); } STATIC void asm_x86_ret(asm_x86_t *as) { asm_x86_write_byte_1(as, OPCODE_RET); } void asm_x86_mov_r32_to_r32(asm_x86_t *as, int src_r32, int dest_r32) { asm_x86_write_byte_2(as, OPCODE_MOV_R32_TO_RM32, MODRM_R32(src_r32) | MODRM_RM_REG | MODRM_RM_R32(dest_r32)); } STATIC void asm_x86_mov_r32_to_disp(asm_x86_t *as, int src_r32, int dest_r32, int dest_disp) { asm_x86_write_byte_1(as, OPCODE_MOV_R32_TO_RM32); asm_x86_write_r32_disp(as, src_r32, dest_r32, dest_disp); } STATIC void asm_x86_mov_disp_to_r32(asm_x86_t *as, int src_r32, int src_disp, int dest_r32) { asm_x86_write_byte_1(as, OPCODE_MOV_RM32_TO_R32); asm_x86_write_r32_disp(as, dest_r32, src_r32, src_disp); } STATIC void asm_x86_lea_disp_to_r32(asm_x86_t *as, int src_r32, int src_disp, int dest_r32) { asm_x86_write_byte_1(as, OPCODE_LEA_MEM_TO_R32); asm_x86_write_r32_disp(as, dest_r32, src_r32, src_disp); } #if 0 void asm_x86_mov_i8_to_r8(asm_x86_t *as, int src_i8, int dest_r32) { asm_x86_write_byte_2(as, OPCODE_MOV_I8_TO_R8 | dest_r32, src_i8); } #endif void asm_x86_mov_i32_to_r32(asm_x86_t *as, int src_i32, int dest_r32) { asm_x86_write_byte_1(as, OPCODE_MOV_I32_TO_R32 | dest_r32); asm_x86_write_word32(as, src_i32); } // src_i32 is stored as a full word in the code, and aligned to machine-word boundary void asm_x86_mov_i32_to_r32_aligned(asm_x86_t *as, int32_t src_i32, int dest_r32) { // mov instruction uses 1 byte for the instruction, before the i32 while (((as->code_offset + 1) & (WORD_SIZE - 1)) != 0) { asm_x86_nop(as); } asm_x86_mov_i32_to_r32(as, src_i32, dest_r32); } void asm_x86_xor_r32_to_r32(asm_x86_t *as, int src_r32, int dest_r32) { asm_x86_write_byte_2(as, OPCODE_XOR_R32_TO_RM32, MODRM_R32(src_r32) | MODRM_RM_REG | MODRM_RM_R32(dest_r32)); } void asm_x86_add_r32_to_r32(asm_x86_t *as, int src_r32, int dest_r32) { asm_x86_write_byte_2(as, OPCODE_ADD_R32_TO_RM32, MODRM_R32(src_r32) | MODRM_RM_REG | MODRM_RM_R32(dest_r32)); } void asm_x86_add_i32_to_r32(asm_x86_t *as, int src_i32, int dest_r32) { if (SIGNED_FIT8(src_i32)) { asm_x86_write_byte_2(as, OPCODE_ADD_I8_TO_RM32, MODRM_R32(0) | MODRM_RM_REG | MODRM_RM_R32(dest_r32)); asm_x86_write_byte_1(as, src_i32 & 0xff); } else { asm_x86_write_byte_2(as, OPCODE_ADD_I32_TO_RM32, MODRM_R32(0) | MODRM_RM_REG | MODRM_RM_R32(dest_r32)); asm_x86_write_word32(as, src_i32); } } #if 0 void asm_x86_sub_r32_from_r32(asm_x86_t *as, int src_r32, int dest_r32) { asm_x86_write_byte_2(as, OPCODE_SUB_R32_FROM_RM32, MODRM_R32(src_r32) | MODRM_RM_REG | MODRM_RM_R32(dest_r32)); } #endif void asm_x86_sub_i32_from_r32(asm_x86_t *as, int src_i32, int dest_r32) { if (SIGNED_FIT8(src_i32)) { // defaults to 32 bit operation asm_x86_write_byte_2(as, OPCODE_SUB_I8_FROM_RM32, MODRM_R32(5) | MODRM_RM_REG | MODRM_RM_R32(dest_r32)); asm_x86_write_byte_1(as, src_i32 & 0xff); } else { // defaults to 32 bit operation asm_x86_write_byte_2(as, OPCODE_SUB_I32_FROM_RM32, MODRM_R32(5) | MODRM_RM_REG | MODRM_RM_R32(dest_r32)); asm_x86_write_word32(as, src_i32); } } #if 0 /* shifts not tested */ void asm_x86_shl_r32_by_imm(asm_x86_t *as, int r32, int imm) { asm_x86_write_byte_2(as, OPCODE_SHL_RM32_BY_I8, MODRM_R32(4) | MODRM_RM_REG | MODRM_RM_R32(r32)); asm_x86_write_byte_1(as, imm); } void asm_x86_shr_r32_by_imm(asm_x86_t *as, int r32, int imm) { asm_x86_write_byte_2(as, OPCODE_SHR_RM32_BY_I8, MODRM_R32(5) | MODRM_RM_REG | MODRM_RM_R32(r32)); asm_x86_write_byte_1(as, imm); } void asm_x86_sar_r32_by_imm(asm_x86_t *as, int r32, int imm) { asm_x86_write_byte_2(as, OPCODE_SAR_RM32_BY_I8, MODRM_R32(7) | MODRM_RM_REG | MODRM_RM_R32(r32)); asm_x86_write_byte_1(as, imm); } #endif void asm_x86_cmp_r32_with_r32(asm_x86_t *as, int src_r32_a, int src_r32_b) { asm_x86_write_byte_2(as, OPCODE_CMP_R32_WITH_RM32, MODRM_R32(src_r32_a) | MODRM_RM_REG | MODRM_RM_R32(src_r32_b)); } #if 0 void asm_x86_cmp_i32_with_r32(asm_x86_t *as, int src_i32, int src_r32) { if (SIGNED_FIT8(src_i32)) { asm_x86_write_byte_2(as, OPCODE_CMP_I8_WITH_RM32, MODRM_R32(7) | MODRM_RM_REG | MODRM_RM_R32(src_r32)); asm_x86_write_byte_1(as, src_i32 & 0xff); } else { asm_x86_write_byte_2(as, OPCODE_CMP_I32_WITH_RM32, MODRM_R32(7) | MODRM_RM_REG | MODRM_RM_R32(src_r32)); asm_x86_write_word32(as, src_i32); } } #endif void asm_x86_test_r8_with_r8(asm_x86_t *as, int src_r32_a, int src_r32_b) { // TODO implement for other registers assert(src_r32_a == REG_EAX); assert(src_r32_b == REG_EAX); asm_x86_write_byte_2(as, OPCODE_TEST_R8_WITH_RM8, MODRM_R32(src_r32_a) | MODRM_RM_REG | MODRM_RM_R32(src_r32_b)); } void asm_x86_setcc_r8(asm_x86_t *as, mp_uint_t jcc_type, int dest_r8) { asm_x86_write_byte_3(as, OPCODE_SETCC_RM8_A, OPCODE_SETCC_RM8_B | jcc_type, MODRM_R32(0) | MODRM_RM_REG | MODRM_RM_R32(dest_r8)); } void asm_x86_label_assign(asm_x86_t *as, mp_uint_t label) { assert(label < as->max_num_labels); if (as->pass < ASM_X86_PASS_EMIT) { // assign label offset assert(as->label_offsets[label] == -1); as->label_offsets[label] = as->code_offset; } else { // ensure label offset has not changed from PASS_COMPUTE to PASS_EMIT //printf("l%d: (at %d=%ld)\n", label, as->label_offsets[label], as->code_offset); assert(as->label_offsets[label] == as->code_offset); } } STATIC int get_label_dest(asm_x86_t *as, int label) { assert(label < as->max_num_labels); return as->label_offsets[label]; } void asm_x86_jmp_label(asm_x86_t *as, mp_uint_t label) { int dest = get_label_dest(as, label); int rel = dest - as->code_offset; if (dest >= 0 && rel < 0) { // is a backwards jump, so we know the size of the jump on the first pass // calculate rel assuming 8 bit relative jump rel -= 2; if (SIGNED_FIT8(rel)) { asm_x86_write_byte_2(as, OPCODE_JMP_REL8, rel & 0xff); } else { rel += 2; goto large_jump; } } else { // is a forwards jump, so need to assume it's large large_jump: rel -= 5; asm_x86_write_byte_1(as, OPCODE_JMP_REL32); asm_x86_write_word32(as, rel); } } void asm_x86_jcc_label(asm_x86_t *as, mp_uint_t jcc_type, mp_uint_t label) { int dest = get_label_dest(as, label); int rel = dest - as->code_offset; if (dest >= 0 && rel < 0) { // is a backwards jump, so we know the size of the jump on the first pass // calculate rel assuming 8 bit relative jump rel -= 2; if (SIGNED_FIT8(rel)) { asm_x86_write_byte_2(as, OPCODE_JCC_REL8 | jcc_type, rel & 0xff); } else { rel += 2; goto large_jump; } } else { // is a forwards jump, so need to assume it's large large_jump: rel -= 6; asm_x86_write_byte_2(as, OPCODE_JCC_REL32_A, OPCODE_JCC_REL32_B | jcc_type); asm_x86_write_word32(as, rel); } } void asm_x86_entry(asm_x86_t *as, mp_uint_t num_locals) { asm_x86_push_r32(as, REG_EBP); asm_x86_mov_r32_to_r32(as, REG_ESP, REG_EBP); asm_x86_sub_i32_from_r32(as, num_locals * WORD_SIZE, REG_ESP); asm_x86_push_r32(as, REG_EBX); asm_x86_push_r32(as, REG_ESI); asm_x86_push_r32(as, REG_EDI); // TODO align stack on 16-byte boundary as->num_locals = num_locals; } void asm_x86_exit(asm_x86_t *as) { asm_x86_pop_r32(as, REG_EDI); asm_x86_pop_r32(as, REG_ESI); asm_x86_pop_r32(as, REG_EBX); asm_x86_write_byte_1(as, OPCODE_LEAVE); asm_x86_ret(as); } #if 0 void asm_x86_push_arg(asm_x86_t *as, int src_arg_num) { asm_x86_push_disp(as, REG_EBP, 2 * WORD_SIZE + src_arg_num * WORD_SIZE); } #endif void asm_x86_mov_arg_to_r32(asm_x86_t *as, int src_arg_num, int dest_r32) { asm_x86_mov_disp_to_r32(as, REG_EBP, 2 * WORD_SIZE + src_arg_num * WORD_SIZE, dest_r32); } #if 0 void asm_x86_mov_r32_to_arg(asm_x86_t *as, int src_r32, int dest_arg_num) { asm_x86_mov_r32_to_disp(as, src_r32, REG_EBP, 2 * WORD_SIZE + dest_arg_num * WORD_SIZE); } #endif // locals: // - stored on the stack in ascending order // - numbered 0 through as->num_locals-1 // - EBP points above the last local // // | EPB // v // l0 l1 l2 ... l(n-1) // ^ ^ // | low address | high address in RAM // STATIC int asm_x86_local_offset_from_ebp(asm_x86_t *as, int local_num) { return (-as->num_locals + local_num) * WORD_SIZE; } void asm_x86_mov_local_to_r32(asm_x86_t *as, int src_local_num, int dest_r32) { asm_x86_mov_disp_to_r32(as, REG_EBP, asm_x86_local_offset_from_ebp(as, src_local_num), dest_r32); } void asm_x86_mov_r32_to_local(asm_x86_t *as, int src_r32, int dest_local_num) { asm_x86_mov_r32_to_disp(as, src_r32, REG_EBP, asm_x86_local_offset_from_ebp(as, dest_local_num)); } void asm_x86_mov_local_addr_to_r32(asm_x86_t *as, int local_num, int dest_r32) { int offset = asm_x86_local_offset_from_ebp(as, local_num); if (offset == 0) { asm_x86_mov_r32_to_r32(as, REG_EBP, dest_r32); } else { asm_x86_lea_disp_to_r32(as, REG_EBP, offset, dest_r32); } } #if 0 void asm_x86_push_local(asm_x86_t *as, int local_num) { asm_x86_push_disp(as, REG_EBP, asm_x86_local_offset_from_ebp(as, local_num)); } void asm_x86_push_local_addr(asm_x86_t *as, int local_num, int temp_r32) { asm_x86_mov_r32_to_r32(as, REG_EBP, temp_r32); asm_x86_add_i32_to_r32(as, asm_x86_local_offset_from_ebp(as, local_num), temp_r32); asm_x86_push_r32(as, temp_r32); } #endif void asm_x86_call_ind(asm_x86_t *as, void *ptr, mp_uint_t n_args, int temp_r32) { // TODO align stack on 16-byte boundary before the call assert(n_args <= 3); if (n_args > 2) { asm_x86_push_r32(as, REG_ARG_3); } if (n_args > 1) { asm_x86_push_r32(as, REG_ARG_2); } if (n_args > 0) { asm_x86_push_r32(as, REG_ARG_1); } #ifdef __LP64__ // We wouldn't run x86 code on an x64 machine. This is here to enable // testing of the x86 emitter only. asm_x86_mov_i32_to_r32(as, (int32_t)(int64_t)ptr, temp_r32); #else // If we get here, sizeof(int) == sizeof(void*). asm_x86_mov_i32_to_r32(as, (int32_t)ptr, temp_r32); #endif asm_x86_write_byte_2(as, OPCODE_CALL_RM32, MODRM_R32(2) | MODRM_RM_REG | MODRM_RM_R32(temp_r32)); // this reduces code size by 2 bytes per call, but doesn't seem to speed it up at all /* asm_x86_write_byte_1(as, OPCODE_CALL_REL32); asm_x86_write_word32(as, ptr - (void*)(as->code_base + as->code_offset + 4)); */ // the caller must clean up the stack if (n_args > 0) { asm_x86_add_i32_to_r32(as, WORD_SIZE * n_args, REG_ESP); } } #endif // MICROPY_EMIT_X86