#include #include #include #include "py/nlr.h" #include "py/compile.h" #include "py/mphal.h" #include "py/runtime.h" #include "py/repl.h" #include "py/gc.h" #include "lib/fatfs/ff.h" #include "lib/fatfs/diskio.h" #include "lib/utils/pyexec.h" #include "extmod/fsusermount.h" #include "asf/common/services/sleepmgr/sleepmgr.h" #include "asf/common/services/usb/udc/udc.h" #include "asf/common2/services/delay/delay.h" #include "asf/sam0/drivers/port/port.h" #include "asf/sam0/drivers/sercom/usart/usart.h" #include "asf/sam0/drivers/system/system.h" #include #include "autoreset.h" #include "mpconfigboard.h" #include "modmachine_pin.h" fs_user_mount_t fs_user_mount_flash; void do_str(const char *src, mp_parse_input_kind_t input_kind) { mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0); if (lex == NULL) { printf("MemoryError: lexer could not allocate memory\n"); return; } nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { qstr source_name = lex->source_name; mp_parse_tree_t parse_tree = mp_parse(lex, input_kind); mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true); mp_call_function_0(module_fun); nlr_pop(); } else { // uncaught exception mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val); } } // TODO(tannewt): Remove these default files in favor a very simple README with // a url to all of the files that ship on boards. static const char fresh_boot_py[] = "# boot.py -- run on boot-up\r\n" "# can run arbitrary Python, but best to keep it minimal\r\n" "\r\n" ; static const char fresh_main_py[] = "# main.py -- put your code here!\r\n" ; static const char fresh_readme_txt[] = "This is a MicroPython board\r\n" "\r\n" "You can get started right away by writing your Python code in 'main.py'.\r\n" "\r\n" "For a serial prompt:\r\n" " - Windows: you need to go to 'Device manager', right click on the unknown device,\r\n" " then update the driver software, using the 'pybcdc.inf' file found on this drive.\r\n" " Then use a terminal program like Hyperterminal or putty.\r\n" " - Mac OS X: use the command: screen /dev/tty.usbmodem*\r\n" " - Linux: use the command: screen /dev/ttyACM0\r\n" "\r\n" "Please visit http://micropython.org/help/ for further help.\r\n" ; extern void flash_init_vfs(fs_user_mount_t *vfs); // we don't make this function static because it needs a lot of stack and we // want it to be executed without using stack within main() function void init_flash_fs() { // init the vfs object fs_user_mount_t *vfs = &fs_user_mount_flash; vfs->str = "/flash"; vfs->len = 6; vfs->flags = 0; flash_init_vfs(vfs); // put the flash device in slot 0 (it will be unused at this point) MP_STATE_PORT(fs_user_mount)[0] = vfs; // try to mount the flash FRESULT res = f_mount(&vfs->fatfs, vfs->str, 1); if (res == FR_NO_FILESYSTEM) { // no filesystem, or asked to reset it, so create a fresh one // We are before USB initializes so temporarily undo the USB_WRITEABLE // requirement. bool usb_writeable = (vfs->flags & FSUSER_USB_WRITEABLE) > 0; vfs->flags &= ~FSUSER_USB_WRITEABLE; res = f_mkfs("/flash", 0, 0); if (res == FR_OK) { // success creating fresh LFS } else { printf("PYB: can't create flash filesystem\n"); MP_STATE_PORT(fs_user_mount)[0] = NULL; return; } // set label f_setlabel("MICROPYTHON"); // create empty main.py FIL fp; f_open(&fp, "/flash/main.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n); f_close(&fp); // TODO(tannewt): Create an .inf driver file for Windows. // create readme file f_open(&fp, "/flash/README.txt", FA_WRITE | FA_CREATE_ALWAYS); f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n); f_close(&fp); // Make sure we have a /flash/boot.py. Create it if needed. FILINFO fno; #if _USE_LFN fno.lfname = NULL; fno.lfsize = 0; #endif res = f_stat("/flash/boot.py", &fno); if (res == FR_OK) { if (fno.fattrib & AM_DIR) { // exists as a directory // TODO handle this case // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation } else { // exists as a file, good! } } else { // doesn't exist, create fresh file FIL fp; f_open(&fp, "/flash/boot.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); } if (usb_writeable) { vfs->flags |= FSUSER_USB_WRITEABLE; } } else if (res == FR_OK) { // mount successful } else { printf("PYB: can't mount flash\n"); MP_STATE_PORT(fs_user_mount)[0] = NULL; return; } // The current directory is used as the boot up directory. // It is set to the internal flash filesystem by default. f_chdrive("/flash"); } static char *stack_top; static char heap[16384]; void reset_mp() { autoreset_stop(); autoreset_enable(); // Sync the file systems in case any used RAM from the GC to cache. As soon // as we re-init the GC all bets are off on the cache. disk_ioctl(0, CTRL_SYNC, NULL); disk_ioctl(1, CTRL_SYNC, NULL); disk_ioctl(2, CTRL_SYNC, NULL); #if MICROPY_ENABLE_GC gc_init(heap, heap + sizeof(heap)); #endif mp_init(); mp_obj_list_init(mp_sys_path, 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib)); mp_obj_list_init(mp_sys_argv, 0); MP_STATE_PORT(mp_kbd_exception) = mp_obj_new_exception(&mp_type_KeyboardInterrupt); pin_init0(); } void start_mp() { #ifdef AUTORESET_TIMER mp_hal_stdout_tx_str("\r\n"); mp_hal_stdout_tx_str("Auto-soft reset is on. Simply save files over USB to run them.\r\n"); mp_hal_stdout_tx_str("Type anything into the REPL to disable and manually reset (CTRL-D) to re-enable.\r\n"); #endif mp_hal_stdout_tx_str("boot.py output:\r\n"); pyexec_file("boot.py"); mp_hal_stdout_tx_str("\r\nmain.py output:\r\n"); pyexec_file("main.py"); } int main(int argc, char **argv) { // initialise the cpu and peripherals #if MICROPY_MIN_USE_SAMD21_MCU void samd21_init(void); samd21_init(); #endif int stack_dummy; // Store the location of stack_dummy as an approximation for the top of the // stack so the GC can account for objects that may be referenced by the // stack between here and where gc_collect is called. stack_top = (char*)&stack_dummy; reset_mp(); // Initialise the local flash filesystem after the gc in case we need to // grab memory from it. Create it if needed, mount in on /flash, and set it // as current dir. init_flash_fs(); // Initialize the autoreset timer. It will automatically reset the repl // after a burst of writes to the FS. autoreset_init(); // Start USB after getting everything going. #ifdef USB_REPL udc_start(); #endif // Run boot and main. start_mp(); // Main script is finished, so now go into REPL mode. // The REPL mode can change, or it can request a soft reset. int exit_code = 0; for (;;) { if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { exit_code = pyexec_raw_repl(); } else { exit_code = pyexec_friendly_repl(); } if (exit_code == PYEXEC_FORCED_EXIT) { mp_hal_stdout_tx_str("soft reboot\r\n"); reset_mp(); start_mp(); } else if (exit_code != 0) { break; } } mp_deinit(); return 0; } void gc_collect(void) { // WARNING: This gc_collect implementation doesn't try to get root // pointers from CPU registers, and thus may function incorrectly. void *dummy; gc_collect_start(); // This naively collects all object references from an approximate stack // range. gc_collect_root(&dummy, ((mp_uint_t)stack_top - (mp_uint_t)&dummy) / sizeof(mp_uint_t)); gc_collect_end(); gc_dump_info(); } mp_lexer_t *fat_vfs_lexer_new_from_file(const char *filename); mp_lexer_t *mp_lexer_new_from_file(const char *filename) { #if MICROPY_VFS_FAT return fat_vfs_lexer_new_from_file(filename); #else (void)filename; return NULL; #endif } mp_import_stat_t fat_vfs_import_stat(const char *path); mp_import_stat_t mp_import_stat(const char *path) { #if MICROPY_VFS_FAT return fat_vfs_import_stat(path); #else (void)path; return MP_IMPORT_STAT_NO_EXIST; #endif } void mp_keyboard_interrupt(void) { MP_STATE_VM(mp_pending_exception) = MP_STATE_PORT(mp_kbd_exception); } void nlr_jump_fail(void *val) { } void NORETURN __fatal_error(const char *msg) { while (1); } #ifndef NDEBUG void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) { printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line); __fatal_error("Assertion failed"); } #endif #if MICROPY_MIN_USE_SAMD21_MCU struct usart_module usart_instance; #ifdef ENABLE_MICRO_TRACE_BUFFER // Stores 2 ^ TRACE_BUFFER_MAGNITUDE_PACKETS packets. // 7 -> 128 packets #define TRACE_BUFFER_MAGNITUDE_PACKETS 7 // Size in uint32_t. Two per packet. #define TRACE_BUFFER_SIZE (1 << (TRACE_BUFFER_MAGNITUDE_PACKETS + 1)) // Size in bytes. 4 bytes per uint32_t. #define TRACE_BUFFER_SIZE_BYTES (TRACE_BUFFER_SIZE << 2) __attribute__((__aligned__(TRACE_BUFFER_SIZE_BYTES))) uint32_t mtb[TRACE_BUFFER_SIZE]; #endif // Serial number as hex characters. char serial_number[USB_DEVICE_GET_SERIAL_NAME_LENGTH]; void load_serial_number(void) { char nibble_to_hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'}; uint32_t* addresses[4] = {(uint32_t *) 0x0080A00C, (uint32_t *) 0x0080A040, (uint32_t *) 0x0080A044, (uint32_t *) 0x0080A048}; for (int i = 0; i < 4; i++) { for (int j = 0; j < 8; j++) { uint8_t nibble = (*(addresses[i]) >> j * 4) & 0xf; serial_number[i * 8 + j] = nibble_to_hex[nibble]; } } } void samd21_init(void) { #ifdef ENABLE_MICRO_TRACE_BUFFER REG_MTB_POSITION = ((uint32_t) (mtb - REG_MTB_BASE)) & 0xFFFFFFF8; REG_MTB_FLOW = (((uint32_t) mtb - REG_MTB_BASE) + TRACE_BUFFER_SIZE_BYTES) & 0xFFFFFFF8; REG_MTB_MASTER = 0x80000000 + (TRACE_BUFFER_MAGNITUDE_PACKETS - 1); #endif load_serial_number(); irq_initialize_vectors(); cpu_irq_enable(); // Initialize the sleep manager sleepmgr_init(); system_init(); delay_init(); board_init(); // SysTick millisecond timer initialization. SysTick_Config(system_cpu_clock_get_hz() / 1000); // Uncomment to init PIN_PA17 for debugging. // struct port_config pin_conf; // port_get_config_defaults(&pin_conf); // // pin_conf.direction = PORT_PIN_DIR_OUTPUT; // port_pin_set_config(MICROPY_HW_LED1, &pin_conf); // port_pin_set_output_level(MICROPY_HW_LED1, false); } #endif