/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "py/parsenum.h" #include "py/runtime.h" #if MICROPY_PY_BUILTINS_FLOAT #include #include "py/formatfloat.h" #if MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_C && MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_D // M_E and M_PI are not part of the math.h standard and may not be defined #ifndef M_E #define M_E (2.7182818284590452354) #endif #ifndef M_PI #define M_PI (3.14159265358979323846) #endif typedef struct _mp_obj_float_t { mp_obj_base_t base; mp_float_t value; } mp_obj_float_t; const mp_obj_float_t mp_const_float_e_obj = {{&mp_type_float}, (mp_float_t)M_E}; const mp_obj_float_t mp_const_float_pi_obj = {{&mp_type_float}, (mp_float_t)M_PI}; #endif #define MICROPY_FLOAT_ZERO MICROPY_FLOAT_CONST(0.0) #if MICROPY_FLOAT_HIGH_QUALITY_HASH // must return actual integer value if it fits in mp_int_t mp_int_t mp_float_hash(mp_float_t src) { mp_float_union_t u = {.f = src}; mp_int_t val; const int adj_exp = (int)u.p.exp - MP_FLOAT_EXP_BIAS; if (adj_exp < 0) { // value < 1; must be sure to handle 0.0 correctly (ie return 0) val = u.i; } else { // if adj_exp is max then: u.p.frc==0 indicates inf, else NaN // else: 1 <= value mp_float_uint_t frc = u.p.frc | ((mp_float_uint_t)1 << MP_FLOAT_FRAC_BITS); if (adj_exp <= MP_FLOAT_FRAC_BITS) { // number may have a fraction; xor the integer part with the fractional part val = (frc >> (MP_FLOAT_FRAC_BITS - adj_exp)) ^ (frc & (((mp_float_uint_t)1 << (MP_FLOAT_FRAC_BITS - adj_exp)) - 1)); } else if ((unsigned int)adj_exp < BITS_PER_BYTE * sizeof(mp_int_t) - 1) { // the number is a (big) whole integer and will fit in val's signed-width val = (mp_int_t)frc << (adj_exp - MP_FLOAT_FRAC_BITS); } else { // integer part will overflow val's width so just use what bits we can val = frc; } } if (u.p.sgn) { val = -(mp_uint_t)val; } return val; } #endif STATIC void float_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) { (void)kind; mp_float_t o_val = mp_obj_float_get(o_in); #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT char buf[16]; #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C const int precision = 6; #else const int precision = 7; #endif #else char buf[32]; const int precision = 16; #endif mp_format_float(o_val, buf, sizeof(buf), 'g', precision, '\0'); mp_print_str(print, buf); if (strchr(buf, '.') == NULL && strchr(buf, 'e') == NULL && strchr(buf, 'n') == NULL) { // Python floats always have decimal point (unless inf or nan) mp_print_str(print, ".0"); } } STATIC mp_obj_t float_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { (void)type_in; mp_arg_check_num(n_args, n_kw, 0, 1, false); switch (n_args) { case 0: return mp_obj_new_float(0); case 1: default: { mp_buffer_info_t bufinfo; if (mp_get_buffer(args[0], &bufinfo, MP_BUFFER_READ)) { // a textual representation, parse it return mp_parse_num_decimal(bufinfo.buf, bufinfo.len, false, false, NULL); } else if (mp_obj_is_float(args[0])) { // a float, just return it return args[0]; } else { // something else, try to cast it to a float return mp_obj_new_float(mp_obj_get_float(args[0])); } } } } STATIC mp_obj_t float_unary_op(mp_unary_op_t op, mp_obj_t o_in) { mp_float_t val = mp_obj_float_get(o_in); switch (op) { case MP_UNARY_OP_BOOL: return mp_obj_new_bool(val != 0); case MP_UNARY_OP_HASH: return MP_OBJ_NEW_SMALL_INT(mp_float_hash(val)); case MP_UNARY_OP_POSITIVE: return o_in; case MP_UNARY_OP_NEGATIVE: return mp_obj_new_float(-val); case MP_UNARY_OP_ABS: { if (signbit(val)) { return mp_obj_new_float(-val); } else { return o_in; } } default: return MP_OBJ_NULL; // op not supported } } STATIC mp_obj_t float_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { mp_float_t lhs_val = mp_obj_float_get(lhs_in); #if MICROPY_PY_BUILTINS_COMPLEX if (mp_obj_is_type(rhs_in, &mp_type_complex)) { return mp_obj_complex_binary_op(op, lhs_val, 0, rhs_in); } #endif return mp_obj_float_binary_op(op, lhs_val, rhs_in); } const mp_obj_type_t mp_type_float = { { &mp_type_type }, .flags = MP_TYPE_FLAG_EQ_NOT_REFLEXIVE | MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE, .name = MP_QSTR_float, .print = float_print, .make_new = float_make_new, .unary_op = float_unary_op, .binary_op = float_binary_op, }; #if MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_C && MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_D mp_obj_t mp_obj_new_float(mp_float_t value) { mp_obj_float_t *o = m_new(mp_obj_float_t, 1); o->base.type = &mp_type_float; o->value = value; return MP_OBJ_FROM_PTR(o); } mp_float_t mp_obj_float_get(mp_obj_t self_in) { assert(mp_obj_is_float(self_in)); mp_obj_float_t *self = MP_OBJ_TO_PTR(self_in); return self->value; } #endif STATIC void mp_obj_float_divmod(mp_float_t *x, mp_float_t *y) { // logic here follows that of CPython // https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations // x == (x//y)*y + (x%y) // divmod(x, y) == (x//y, x%y) mp_float_t mod = MICROPY_FLOAT_C_FUN(fmod)(*x, *y); mp_float_t div = (*x - mod) / *y; // Python specs require that mod has same sign as second operand if (mod == MICROPY_FLOAT_ZERO) { mod = MICROPY_FLOAT_C_FUN(copysign)(MICROPY_FLOAT_ZERO, *y); } else { if ((mod < MICROPY_FLOAT_ZERO) != (*y < MICROPY_FLOAT_ZERO)) { mod += *y; div -= MICROPY_FLOAT_CONST(1.0); } } mp_float_t floordiv; if (div == MICROPY_FLOAT_ZERO) { // if division is zero, take the correct sign of zero floordiv = MICROPY_FLOAT_C_FUN(copysign)(MICROPY_FLOAT_ZERO, *x / *y); } else { // Python specs require that x == (x//y)*y + (x%y) floordiv = MICROPY_FLOAT_C_FUN(floor)(div); if (div - floordiv > MICROPY_FLOAT_CONST(0.5)) { floordiv += MICROPY_FLOAT_CONST(1.0); } } // return results *x = floordiv; *y = mod; } mp_obj_t mp_obj_float_binary_op(mp_binary_op_t op, mp_float_t lhs_val, mp_obj_t rhs_in) { mp_float_t rhs_val; if (!mp_obj_get_float_maybe(rhs_in, &rhs_val)) { return MP_OBJ_NULL; // op not supported } switch (op) { case MP_BINARY_OP_ADD: case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; case MP_BINARY_OP_SUBTRACT: case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; case MP_BINARY_OP_MULTIPLY: case MP_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break; case MP_BINARY_OP_FLOOR_DIVIDE: case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE: if (rhs_val == 0) { zero_division_error: mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("divide by zero")); } // Python specs require that x == (x//y)*y + (x%y) so we must // call divmod to compute the correct floor division, which // returns the floor divide in lhs_val. mp_obj_float_divmod(&lhs_val, &rhs_val); break; case MP_BINARY_OP_TRUE_DIVIDE: case MP_BINARY_OP_INPLACE_TRUE_DIVIDE: if (rhs_val == 0) { goto zero_division_error; } lhs_val /= rhs_val; break; case MP_BINARY_OP_MODULO: case MP_BINARY_OP_INPLACE_MODULO: if (rhs_val == MICROPY_FLOAT_ZERO) { goto zero_division_error; } lhs_val = MICROPY_FLOAT_C_FUN(fmod)(lhs_val, rhs_val); // Python specs require that mod has same sign as second operand if (lhs_val == MICROPY_FLOAT_ZERO) { lhs_val = MICROPY_FLOAT_C_FUN(copysign)(0.0, rhs_val); } else { if ((lhs_val < MICROPY_FLOAT_ZERO) != (rhs_val < MICROPY_FLOAT_ZERO)) { lhs_val += rhs_val; } } break; case MP_BINARY_OP_POWER: case MP_BINARY_OP_INPLACE_POWER: if (lhs_val == 0 && rhs_val < 0 && !isinf(rhs_val)) { goto zero_division_error; } if (lhs_val < 0 && rhs_val != MICROPY_FLOAT_C_FUN(floor)(rhs_val) && !isnan(rhs_val)) { #if MICROPY_PY_BUILTINS_COMPLEX return mp_obj_complex_binary_op(MP_BINARY_OP_POWER, lhs_val, 0, rhs_in); #else mp_raise_ValueError(MP_ERROR_TEXT("complex values not supported")); #endif } lhs_val = MICROPY_FLOAT_C_FUN(pow)(lhs_val, rhs_val); break; case MP_BINARY_OP_DIVMOD: { if (rhs_val == 0) { goto zero_division_error; } mp_obj_float_divmod(&lhs_val, &rhs_val); mp_obj_t tuple[2] = { mp_obj_new_float(lhs_val), mp_obj_new_float(rhs_val), }; return mp_obj_new_tuple(2, tuple); } case MP_BINARY_OP_LESS: return mp_obj_new_bool(lhs_val < rhs_val); case MP_BINARY_OP_MORE: return mp_obj_new_bool(lhs_val > rhs_val); case MP_BINARY_OP_EQUAL: return mp_obj_new_bool(lhs_val == rhs_val); case MP_BINARY_OP_LESS_EQUAL: return mp_obj_new_bool(lhs_val <= rhs_val); case MP_BINARY_OP_MORE_EQUAL: return mp_obj_new_bool(lhs_val >= rhs_val); default: return MP_OBJ_NULL; // op not supported } return mp_obj_new_float(lhs_val); } #endif // MICROPY_PY_BUILTINS_FLOAT