/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "audio_dma.h" #include "samd/clocks.h" #include "samd/events.h" #include "samd/dma.h" #include "shared-bindings/audiocore/RawSample.h" #include "shared-bindings/audiocore/WaveFile.h" #include "supervisor/shared/tick.h" #include "py/mpstate.h" #include "py/runtime.h" #if CIRCUITPY_AUDIOIO || CIRCUITPY_AUDIOBUSIO static audio_dma_t* audio_dma_state[AUDIO_DMA_CHANNEL_COUNT]; // This cannot be in audio_dma_state because it's volatile. static volatile bool audio_dma_pending[AUDIO_DMA_CHANNEL_COUNT]; static bool audio_dma_allocated[AUDIO_DMA_CHANNEL_COUNT]; uint8_t audio_dma_allocate_channel(void) { uint8_t channel; for (channel = 0; channel < AUDIO_DMA_CHANNEL_COUNT; channel++) { if (!audio_dma_allocated[channel]) { audio_dma_allocated[channel] = true; return channel; } } return channel; // i.e., return failure } void audio_dma_free_channel(uint8_t channel) { assert(channel < AUDIO_DMA_CHANNEL_COUNT); assert(audio_dma_allocated[channel]); audio_dma_disable_channel(channel); audio_dma_allocated[channel] = false; supervisor_disable_tick(); } void audio_dma_disable_channel(uint8_t channel) { if (channel >= AUDIO_DMA_CHANNEL_COUNT) return; dma_disable_channel(channel); } void audio_dma_enable_channel(uint8_t channel) { if (channel >= AUDIO_DMA_CHANNEL_COUNT) return; supervisor_enable_tick(); dma_enable_channel(channel); } void audio_dma_convert_signed(audio_dma_t* dma, uint8_t* buffer, uint32_t buffer_length, uint8_t** output_buffer, uint32_t* output_buffer_length, uint8_t* output_spacing) { if (dma->first_buffer_free) { *output_buffer = dma->first_buffer; } else { *output_buffer = dma->second_buffer; } #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" if (dma->signed_to_unsigned || dma->unsigned_to_signed) { *output_buffer_length = buffer_length / dma->spacing; *output_spacing = 1; uint32_t out_i = 0; if (dma->bytes_per_sample == 1) { for (uint32_t i = 0; i < buffer_length; i += dma->spacing) { if (dma->signed_to_unsigned) { ((uint8_t*) *output_buffer)[out_i] = ((int8_t*) buffer)[i] + 0x80; } else { ((int8_t*) *output_buffer)[out_i] = ((uint8_t*) buffer)[i] - 0x80; } out_i += 1; } } else if (dma->bytes_per_sample == 2) { for (uint32_t i = 0; i < buffer_length / 2; i += dma->spacing) { if (dma->signed_to_unsigned) { ((uint16_t*) *output_buffer)[out_i] = ((int16_t*) buffer)[i] + 0x8000; } else { ((int16_t*) *output_buffer)[out_i] = ((uint16_t*) buffer)[i] - 0x8000; } out_i += 1; } } } else { *output_buffer = buffer; *output_buffer_length = buffer_length; *output_spacing = dma->spacing; } #pragma GCC diagnostic pop dma->first_buffer_free = !dma->first_buffer_free; } void audio_dma_load_next_block(audio_dma_t* dma) { uint8_t* buffer; uint32_t buffer_length; audioio_get_buffer_result_t get_buffer_result = audiosample_get_buffer(dma->sample, dma->single_channel, dma->audio_channel, &buffer, &buffer_length); DmacDescriptor* descriptor = dma->second_descriptor; if (dma->first_descriptor_free) { descriptor = dma_descriptor(dma->dma_channel); } dma->first_descriptor_free = !dma->first_descriptor_free; if (get_buffer_result == GET_BUFFER_ERROR) { audio_dma_stop(dma); return; } uint8_t* output_buffer; uint32_t output_buffer_length; uint8_t output_spacing; audio_dma_convert_signed(dma, buffer, buffer_length, &output_buffer, &output_buffer_length, &output_spacing); descriptor->BTCNT.reg = output_buffer_length / dma->beat_size / output_spacing; descriptor->SRCADDR.reg = ((uint32_t) output_buffer) + output_buffer_length; if (get_buffer_result == GET_BUFFER_DONE) { if (dma->loop) { audiosample_reset_buffer(dma->sample, dma->single_channel, dma->audio_channel); } else { descriptor->DESCADDR.reg = 0; } } descriptor->BTCTRL.bit.VALID = true; } static void setup_audio_descriptor(DmacDescriptor* descriptor, uint8_t beat_size, uint8_t spacing, uint32_t output_register_address) { uint32_t beat_size_reg = DMAC_BTCTRL_BEATSIZE_BYTE; if (beat_size == 2) { beat_size_reg = DMAC_BTCTRL_BEATSIZE_HWORD; } else if (beat_size == 4) { beat_size_reg = DMAC_BTCTRL_BEATSIZE_WORD; } descriptor->BTCTRL.reg = beat_size_reg | DMAC_BTCTRL_SRCINC | DMAC_BTCTRL_EVOSEL_BLOCK | DMAC_BTCTRL_STEPSIZE(spacing - 1) | DMAC_BTCTRL_STEPSEL_SRC; descriptor->DSTADDR.reg = output_register_address; } // Playback should be shutdown before calling this. audio_dma_result audio_dma_setup_playback(audio_dma_t* dma, mp_obj_t sample, bool loop, bool single_channel, uint8_t audio_channel, bool output_signed, uint32_t output_register_address, uint8_t dma_trigger_source) { uint8_t dma_channel = audio_dma_allocate_channel(); if (dma_channel >= AUDIO_DMA_CHANNEL_COUNT) { return AUDIO_DMA_DMA_BUSY; } dma->sample = sample; dma->loop = loop; dma->single_channel = single_channel; dma->audio_channel = audio_channel; dma->dma_channel = dma_channel; dma->signed_to_unsigned = false; dma->unsigned_to_signed = false; dma->second_descriptor = NULL; dma->spacing = 1; dma->first_descriptor_free = true; audiosample_reset_buffer(sample, single_channel, audio_channel); bool single_buffer; bool samples_signed; uint32_t max_buffer_length; audiosample_get_buffer_structure(sample, single_channel, &single_buffer, &samples_signed, &max_buffer_length, &dma->spacing); uint8_t output_spacing = dma->spacing; if (output_signed != samples_signed) { output_spacing = 1; max_buffer_length /= dma->spacing; dma->first_buffer = (uint8_t*) m_realloc(dma->first_buffer, max_buffer_length); if (dma->first_buffer == NULL) { return AUDIO_DMA_MEMORY_ERROR; } dma->first_buffer_free = true; if (!single_buffer) { dma->second_buffer = (uint8_t*) m_realloc(dma->second_buffer, max_buffer_length); if (dma->second_buffer == NULL) { return AUDIO_DMA_MEMORY_ERROR; } } dma->signed_to_unsigned = !output_signed && samples_signed; dma->unsigned_to_signed = output_signed && !samples_signed; } dma->event_channel = 0xff; if (!single_buffer) { dma->second_descriptor = (DmacDescriptor*) m_malloc(sizeof(DmacDescriptor), false); if (dma->second_descriptor == NULL) { return AUDIO_DMA_MEMORY_ERROR; } // We're likely double buffering so set up the block interrupts. turn_on_event_system(); dma->event_channel = find_sync_event_channel(); if (dma->event_channel >= EVSYS_SYNCH_NUM) { mp_raise_RuntimeError(translate("All sync event channels in use")); } init_event_channel_interrupt(dma->event_channel, CORE_GCLK, EVSYS_ID_GEN_DMAC_CH_0 + dma_channel); // We keep the audio_dma_t for internal use and the sample as a root pointer because it // contains the audiodma structure. audio_dma_state[dma->dma_channel] = dma; MP_STATE_PORT(playing_audio)[dma->dma_channel] = dma->sample; } if (audiosample_bits_per_sample(sample) == 16) { dma->beat_size = 2; dma->bytes_per_sample = 2; } else { dma->beat_size = 1; dma->bytes_per_sample = 1; if (single_channel) { output_register_address += 1; } } // Transfer both channels at once. if (!single_channel && audiosample_channel_count(sample) == 2) { dma->beat_size *= 2; } DmacDescriptor* first_descriptor = dma_descriptor(dma_channel); setup_audio_descriptor(first_descriptor, dma->beat_size, output_spacing, output_register_address); if (single_buffer) { first_descriptor->DESCADDR.reg = 0; if (dma->loop) { first_descriptor->DESCADDR.reg = (uint32_t) first_descriptor; } } else { first_descriptor->DESCADDR.reg = (uint32_t) dma->second_descriptor; setup_audio_descriptor(dma->second_descriptor, dma->beat_size, output_spacing, output_register_address); dma->second_descriptor->DESCADDR.reg = (uint32_t) first_descriptor; } // Load the first two blocks up front. audio_dma_load_next_block(dma); if (!single_buffer) { audio_dma_load_next_block(dma); } dma_configure(dma_channel, dma_trigger_source, true); audio_dma_enable_channel(dma_channel); return AUDIO_DMA_OK; } void audio_dma_stop(audio_dma_t* dma) { uint8_t channel = dma->dma_channel; if (channel < AUDIO_DMA_CHANNEL_COUNT) { audio_dma_disable_channel(channel); disable_event_channel(dma->event_channel); MP_STATE_PORT(playing_audio)[channel] = NULL; audio_dma_state[channel] = NULL; audio_dma_free_channel(dma->dma_channel); } dma->dma_channel = AUDIO_DMA_CHANNEL_COUNT; } void audio_dma_pause(audio_dma_t* dma) { dma_suspend_channel(dma->dma_channel); } void audio_dma_resume(audio_dma_t* dma) { dma_resume_channel(dma->dma_channel); } bool audio_dma_get_paused(audio_dma_t* dma) { if (dma->dma_channel >= AUDIO_DMA_CHANNEL_COUNT) { return false; } uint32_t status = dma_transfer_status(dma->dma_channel); return (status & DMAC_CHINTFLAG_SUSP) != 0; } void audio_dma_init(audio_dma_t* dma) { dma->dma_channel = AUDIO_DMA_CHANNEL_COUNT; } void audio_dma_reset(void) { for (uint8_t i = 0; i < AUDIO_DMA_CHANNEL_COUNT; i++) { audio_dma_state[i] = NULL; audio_dma_pending[i] = false; if (audio_dma_allocated[i]) { supervisor_disable_tick(); } audio_dma_allocated[i] = false; audio_dma_disable_channel(i); dma_descriptor(i)->BTCTRL.bit.VALID = false; MP_STATE_PORT(playing_audio)[i] = NULL; } } bool audio_dma_get_playing(audio_dma_t* dma) { if (dma->dma_channel >= AUDIO_DMA_CHANNEL_COUNT) { return false; } uint32_t status = dma_transfer_status(dma->dma_channel); if ((status & DMAC_CHINTFLAG_TCMPL) != 0 || (status & DMAC_CHINTFLAG_TERR) != 0) { audio_dma_stop(dma); } return (status & DMAC_CHINTFLAG_TERR) == 0; } // WARN(tannewt): DO NOT print from here. Printing calls background tasks such as this and causes a // stack overflow. void audio_dma_background(void) { for (uint8_t i = 0; i < AUDIO_DMA_CHANNEL_COUNT; i++) { if (audio_dma_pending[i]) { continue; } audio_dma_t* dma = audio_dma_state[i]; if (dma == NULL) { continue; } bool block_done = event_interrupt_active(dma->event_channel); if (!block_done) { continue; } // audio_dma_load_next_block() can call Python code, which can call audio_dma_background() // recursively at the next background processing time. So disallow recursive calls to here. audio_dma_pending[i] = true; audio_dma_load_next_block(dma); audio_dma_pending[i] = false; } } #endif