/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include // CC3000 defines its own ENOBUFS (different to standard one!) #undef ENOBUFS #include "py/nlr.h" #include "py/objtuple.h" #include "py/objlist.h" #include "py/stream.h" #include "py/runtime.h" #include "modnetwork.h" #include "pin.h" #include "genhdr/pins.h" #include "spi.h" #include "pybioctl.h" #include "hci.h" #include "socket.h" #include "inet_ntop.h" #include "inet_pton.h" #include "ccspi.h" #include "wlan.h" #include "nvmem.h" #include "netapp.h" #include "patch_prog.h" #define MAX_ADDRSTRLEN (128) #define MAX_RX_PACKET (CC3000_RX_BUFFER_SIZE-CC3000_MINIMAL_RX_SIZE-1) #define MAX_TX_PACKET (CC3000_TX_BUFFER_SIZE-CC3000_MINIMAL_TX_SIZE-1) #define MAKE_SOCKADDR(addr, ip, port) \ sockaddr addr; \ addr.sa_family = AF_INET; \ addr.sa_data[0] = port >> 8; \ addr.sa_data[1] = port; \ addr.sa_data[2] = ip[0]; \ addr.sa_data[3] = ip[1]; \ addr.sa_data[4] = ip[2]; \ addr.sa_data[5] = ip[3]; #define UNPACK_SOCKADDR(addr, ip, port) \ port = (addr.sa_data[0] << 8) | addr.sa_data[1]; \ ip[0] = addr.sa_data[2]; \ ip[1] = addr.sa_data[3]; \ ip[2] = addr.sa_data[4]; \ ip[3] = addr.sa_data[5]; STATIC int cc3k_socket_ioctl(mod_network_socket_obj_t *socket, mp_uint_t request, mp_uint_t arg, int *_errno); int CC3000_EXPORT(errno); // for cc3000 driver STATIC volatile uint32_t fd_closed_state = 0; STATIC volatile bool wlan_connected = false; STATIC volatile bool ip_obtained = false; STATIC int cc3k_get_fd_closed_state(int fd) { return fd_closed_state & (1 << fd); } STATIC void cc3k_set_fd_closed_state(int fd) { fd_closed_state |= 1 << fd; } STATIC void cc3k_reset_fd_closed_state(int fd) { fd_closed_state &= ~(1 << fd); } STATIC void cc3k_callback(long event_type, char *data, unsigned char length) { switch (event_type) { case HCI_EVNT_WLAN_UNSOL_CONNECT: wlan_connected = true; break; case HCI_EVNT_WLAN_UNSOL_DISCONNECT: // link down wlan_connected = false; ip_obtained = false; break; case HCI_EVNT_WLAN_UNSOL_DHCP: ip_obtained = true; break; case HCI_EVNT_BSD_TCP_CLOSE_WAIT: // mark socket for closure cc3k_set_fd_closed_state(data[0]); break; } } STATIC int cc3k_gethostbyname(mp_obj_t nic, const char *name, mp_uint_t len, uint8_t *out_ip) { uint32_t ip; // CC3000 gethostbyname is unreliable and usually returns -95 on first call for (int retry = 5; CC3000_EXPORT(gethostbyname)((char*)name, len, &ip) < 0; retry--) { if (retry == 0 || CC3000_EXPORT(errno) != -95) { return CC3000_EXPORT(errno); } HAL_Delay(50); } if (ip == 0) { // unknown host return ENOENT; } out_ip[0] = ip >> 24; out_ip[1] = ip >> 16; out_ip[2] = ip >> 8; out_ip[3] = ip; return 0; } STATIC int cc3k_socket_socket(mod_network_socket_obj_t *socket, int *_errno) { if (socket->u_param.domain != MOD_NETWORK_AF_INET) { *_errno = EAFNOSUPPORT; return -1; } mp_uint_t type; switch (socket->u_param.type) { case MOD_NETWORK_SOCK_STREAM: type = SOCK_STREAM; break; case MOD_NETWORK_SOCK_DGRAM: type = SOCK_DGRAM; break; case MOD_NETWORK_SOCK_RAW: type = SOCK_RAW; break; default: *_errno = EINVAL; return -1; } // open socket int fd = CC3000_EXPORT(socket)(AF_INET, type, 0); if (fd < 0) { *_errno = CC3000_EXPORT(errno); return -1; } // clear socket state cc3k_reset_fd_closed_state(fd); // store state of this socket socket->u_state = fd; // make accept blocking by default int optval = SOCK_OFF; socklen_t optlen = sizeof(optval); CC3000_EXPORT(setsockopt)(socket->u_state, SOL_SOCKET, SOCKOPT_ACCEPT_NONBLOCK, &optval, optlen); return 0; } STATIC void cc3k_socket_close(mod_network_socket_obj_t *socket) { CC3000_EXPORT(closesocket)(socket->u_state); } STATIC int cc3k_socket_bind(mod_network_socket_obj_t *socket, byte *ip, mp_uint_t port, int *_errno) { MAKE_SOCKADDR(addr, ip, port) int ret = CC3000_EXPORT(bind)(socket->u_state, &addr, sizeof(addr)); if (ret != 0) { *_errno = ret; return -1; } return 0; } STATIC int cc3k_socket_listen(mod_network_socket_obj_t *socket, mp_int_t backlog, int *_errno) { int ret = CC3000_EXPORT(listen)(socket->u_state, backlog); if (ret != 0) { *_errno = ret; return -1; } return 0; } STATIC int cc3k_socket_accept(mod_network_socket_obj_t *socket, mod_network_socket_obj_t *socket2, byte *ip, mp_uint_t *port, int *_errno) { // accept incoming connection int fd; sockaddr addr; socklen_t addr_len = sizeof(addr); if ((fd = CC3000_EXPORT(accept)(socket->u_state, &addr, &addr_len)) < 0) { if (fd == SOC_IN_PROGRESS) { *_errno = EAGAIN; } else { *_errno = -fd; } return -1; } // clear socket state cc3k_reset_fd_closed_state(fd); // store state in new socket object socket2->u_state = fd; // return ip and port // it seems CC3000 returns little endian for accept?? //UNPACK_SOCKADDR(addr, ip, *port); *port = (addr.sa_data[1] << 8) | addr.sa_data[0]; ip[3] = addr.sa_data[2]; ip[2] = addr.sa_data[3]; ip[1] = addr.sa_data[4]; ip[0] = addr.sa_data[5]; return 0; } STATIC int cc3k_socket_connect(mod_network_socket_obj_t *socket, byte *ip, mp_uint_t port, int *_errno) { MAKE_SOCKADDR(addr, ip, port) int ret = CC3000_EXPORT(connect)(socket->u_state, &addr, sizeof(addr)); if (ret != 0) { *_errno = CC3000_EXPORT(errno); return -1; } return 0; } STATIC mp_uint_t cc3k_socket_send(mod_network_socket_obj_t *socket, const byte *buf, mp_uint_t len, int *_errno) { if (cc3k_get_fd_closed_state(socket->u_state)) { CC3000_EXPORT(closesocket)(socket->u_state); *_errno = EPIPE; return -1; } // CC3K does not handle fragmentation, and will overflow, // split the packet into smaller ones and send them out. mp_int_t bytes = 0; while (bytes < len) { int n = MIN((len - bytes), MAX_TX_PACKET); n = CC3000_EXPORT(send)(socket->u_state, (uint8_t*)buf + bytes, n, 0); if (n <= 0) { *_errno = CC3000_EXPORT(errno); return -1; } bytes += n; } return bytes; } STATIC mp_uint_t cc3k_socket_recv(mod_network_socket_obj_t *socket, byte *buf, mp_uint_t len, int *_errno) { // check the socket is open if (cc3k_get_fd_closed_state(socket->u_state)) { // socket is closed, but CC3000 may have some data remaining in buffer, so check fd_set rfds; FD_ZERO(&rfds); FD_SET(socket->u_state, &rfds); timeval tv; tv.tv_sec = 0; tv.tv_usec = 1; int nfds = CC3000_EXPORT(select)(socket->u_state + 1, &rfds, NULL, NULL, &tv); if (nfds == -1 || !FD_ISSET(socket->u_state, &rfds)) { // no data waiting, so close socket and return 0 data CC3000_EXPORT(closesocket)(socket->u_state); return 0; } } // cap length at MAX_RX_PACKET len = MIN(len, MAX_RX_PACKET); // do the recv int ret = CC3000_EXPORT(recv)(socket->u_state, buf, len, 0); if (ret < 0) { *_errno = CC3000_EXPORT(errno); return -1; } return ret; } STATIC mp_uint_t cc3k_socket_sendto(mod_network_socket_obj_t *socket, const byte *buf, mp_uint_t len, byte *ip, mp_uint_t port, int *_errno) { MAKE_SOCKADDR(addr, ip, port) int ret = CC3000_EXPORT(sendto)(socket->u_state, (byte*)buf, len, 0, (sockaddr*)&addr, sizeof(addr)); if (ret < 0) { *_errno = CC3000_EXPORT(errno); return -1; } return ret; } STATIC mp_uint_t cc3k_socket_recvfrom(mod_network_socket_obj_t *socket, byte *buf, mp_uint_t len, byte *ip, mp_uint_t *port, int *_errno) { sockaddr addr; socklen_t addr_len = sizeof(addr); mp_int_t ret = CC3000_EXPORT(recvfrom)(socket->u_state, buf, len, 0, &addr, &addr_len); if (ret < 0) { *_errno = CC3000_EXPORT(errno); return -1; } UNPACK_SOCKADDR(addr, ip, *port); return ret; } STATIC int cc3k_socket_setsockopt(mod_network_socket_obj_t *socket, mp_uint_t level, mp_uint_t opt, const void *optval, mp_uint_t optlen, int *_errno) { int ret = CC3000_EXPORT(setsockopt)(socket->u_state, level, opt, optval, optlen); if (ret < 0) { *_errno = CC3000_EXPORT(errno); return -1; } return 0; } STATIC int cc3k_socket_settimeout(mod_network_socket_obj_t *socket, mp_uint_t timeout_ms, int *_errno) { int ret; if (timeout_ms == 0 || timeout_ms == -1) { int optval; socklen_t optlen = sizeof(optval); if (timeout_ms == 0) { // set non-blocking mode optval = SOCK_ON; } else { // set blocking mode optval = SOCK_OFF; } ret = CC3000_EXPORT(setsockopt)(socket->u_state, SOL_SOCKET, SOCKOPT_RECV_NONBLOCK, &optval, optlen); if (ret == 0) { ret = CC3000_EXPORT(setsockopt)(socket->u_state, SOL_SOCKET, SOCKOPT_ACCEPT_NONBLOCK, &optval, optlen); } } else { // set timeout socklen_t optlen = sizeof(timeout_ms); ret = CC3000_EXPORT(setsockopt)(socket->u_state, SOL_SOCKET, SOCKOPT_RECV_TIMEOUT, &timeout_ms, optlen); } if (ret != 0) { *_errno = CC3000_EXPORT(errno); return -1; } return 0; } STATIC int cc3k_socket_ioctl(mod_network_socket_obj_t *socket, mp_uint_t request, mp_uint_t arg, int *_errno) { mp_uint_t ret; if (request == MP_IOCTL_POLL) { mp_uint_t flags = arg; ret = 0; int fd = socket->u_state; // init fds fd_set rfds, wfds, xfds; FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); // set fds if needed if (flags & MP_IOCTL_POLL_RD) { FD_SET(fd, &rfds); // A socked that just closed is available for reading. A call to // recv() returns 0 which is consistent with BSD. if (cc3k_get_fd_closed_state(fd)) { ret |= MP_IOCTL_POLL_RD; } } if (flags & MP_IOCTL_POLL_WR) { FD_SET(fd, &wfds); } if (flags & MP_IOCTL_POLL_HUP) { FD_SET(fd, &xfds); } // call cc3000 select with minimum timeout timeval tv; tv.tv_sec = 0; tv.tv_usec = 1; int nfds = CC3000_EXPORT(select)(fd + 1, &rfds, &wfds, &xfds, &tv); // check for error if (nfds == -1) { *_errno = CC3000_EXPORT(errno); return -1; } // check return of select if (FD_ISSET(fd, &rfds)) { ret |= MP_IOCTL_POLL_RD; } if (FD_ISSET(fd, &wfds)) { ret |= MP_IOCTL_POLL_WR; } if (FD_ISSET(fd, &xfds)) { ret |= MP_IOCTL_POLL_HUP; } } else { *_errno = EINVAL; ret = -1; } return ret; } /******************************************************************************/ // Micro Python bindings; CC3K class typedef struct _cc3k_obj_t { mp_obj_base_t base; } cc3k_obj_t; STATIC const cc3k_obj_t cc3k_obj = {{(mp_obj_type_t*)&mod_network_nic_type_cc3k}}; // \classmethod \constructor(spi, pin_cs, pin_en, pin_irq) // Initialise the CC3000 using the given SPI bus and pins and return a CC3K object. // // Note: pins were originally hard-coded to: // PYBv1.0: init(pyb.SPI(2), pyb.Pin.board.Y5, pyb.Pin.board.Y4, pyb.Pin.board.Y3) // [SPI on Y position; Y6=B13=SCK, Y7=B14=MISO, Y8=B15=MOSI] // // STM32F4DISC: init(pyb.SPI(2), pyb.Pin.cpu.A15, pyb.Pin.cpu.B10, pyb.Pin.cpu.B11) STATIC mp_obj_t cc3k_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 4, 4, false); // set the pins to use SpiInit( spi_get_handle(args[0]), pin_find(args[1]), pin_find(args[2]), pin_find(args[3]) ); // initialize and start the module wlan_init(cc3k_callback, NULL, NULL, NULL, ReadWlanInterruptPin, SpiResumeSpi, SpiPauseSpi, WriteWlanPin); if (wlan_start(0) != 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "failed to init CC3000 module")); } // set connection policy. this should be called explicitly by the user // wlan_ioctl_set_connection_policy(0, 0, 0); // Mask out all non-required events from the CC3000 wlan_set_event_mask(HCI_EVNT_WLAN_KEEPALIVE| HCI_EVNT_WLAN_UNSOL_INIT| HCI_EVNT_WLAN_ASYNC_PING_REPORT| HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE); // register with network module mod_network_register_nic((mp_obj_t)&cc3k_obj); return (mp_obj_t)&cc3k_obj; } // method connect(ssid, key=None, *, security=WPA2, bssid=None) STATIC mp_obj_t cc3k_connect(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_ssid, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_key, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_security, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = WLAN_SEC_WPA2} }, { MP_QSTR_bssid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get ssid mp_uint_t ssid_len; const char *ssid = mp_obj_str_get_data(args[0].u_obj, &ssid_len); // get key and sec mp_uint_t key_len = 0; const char *key = NULL; mp_uint_t sec = WLAN_SEC_UNSEC; if (args[1].u_obj != mp_const_none) { key = mp_obj_str_get_data(args[1].u_obj, &key_len); sec = args[2].u_int; } // get bssid const char *bssid = NULL; if (args[3].u_obj != mp_const_none) { bssid = mp_obj_str_get_str(args[3].u_obj); } // connect to AP if (wlan_connect(sec, (char*)ssid, ssid_len, (uint8_t*)bssid, (uint8_t*)key, key_len) != 0) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "could not connect to ssid=%s, sec=%d, key=%s\n", ssid, sec, key)); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(cc3k_connect_obj, 1, cc3k_connect); STATIC mp_obj_t cc3k_disconnect(mp_obj_t self_in) { // should we check return value? wlan_disconnect(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_disconnect_obj, cc3k_disconnect); STATIC mp_obj_t cc3k_isconnected(mp_obj_t self_in) { return MP_BOOL(wlan_connected && ip_obtained); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_isconnected_obj, cc3k_isconnected); STATIC mp_obj_t cc3k_ifconfig(mp_obj_t self_in) { tNetappIpconfigRetArgs ipconfig; netapp_ipconfig(&ipconfig); // CC3000 returns little endian, but we want big endian mod_network_convert_ipv4_endianness(ipconfig.aucIP); mod_network_convert_ipv4_endianness(ipconfig.aucSubnetMask); mod_network_convert_ipv4_endianness(ipconfig.aucDefaultGateway); mod_network_convert_ipv4_endianness(ipconfig.aucDNSServer); mod_network_convert_ipv4_endianness(ipconfig.aucDHCPServer); // render MAC address VSTR_FIXED(mac_vstr, 18); const uint8_t *mac = ipconfig.uaMacAddr; vstr_printf(&mac_vstr, "%02x:%02x:%02x:%02x:%02x:%02x", mac[5], mac[4], mac[3], mac[2], mac[1], mac[0]); // create and return tuple with ifconfig info mp_obj_t tuple[7] = { mod_network_format_ipv4_addr(ipconfig.aucIP), mod_network_format_ipv4_addr(ipconfig.aucSubnetMask), mod_network_format_ipv4_addr(ipconfig.aucDefaultGateway), mod_network_format_ipv4_addr(ipconfig.aucDNSServer), mod_network_format_ipv4_addr(ipconfig.aucDHCPServer), mp_obj_new_str(mac_vstr.buf, mac_vstr.len, false), mp_obj_new_str((const char*)ipconfig.uaSSID, strlen((const char*)ipconfig.uaSSID), false), }; return mp_obj_new_tuple(MP_ARRAY_SIZE(tuple), tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_ifconfig_obj, cc3k_ifconfig); STATIC mp_obj_t cc3k_patch_version(mp_obj_t self_in) { uint8_t pver[2]; mp_obj_tuple_t *t_pver; nvmem_read_sp_version(pver); t_pver = mp_obj_new_tuple(2, NULL); t_pver->items[0] = mp_obj_new_int(pver[0]); t_pver->items[1] = mp_obj_new_int(pver[1]); return t_pver; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(cc3k_patch_version_obj, cc3k_patch_version); STATIC mp_obj_t cc3k_patch_program(mp_obj_t self_in, mp_obj_t key_in) { const char *key = mp_obj_str_get_str(key_in); if (key[0] == 'p' && key[1] == 'g' && key[2] == 'm' && key[3] == '\0') { patch_prog_start(); } else { mp_print_str(&mp_plat_print, "pass 'pgm' as argument in order to program\n"); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(cc3k_patch_program_obj, cc3k_patch_program); STATIC const mp_map_elem_t cc3k_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_connect), (mp_obj_t)&cc3k_connect_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_disconnect), (mp_obj_t)&cc3k_disconnect_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_isconnected), (mp_obj_t)&cc3k_isconnected_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_ifconfig), (mp_obj_t)&cc3k_ifconfig_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_patch_version), (mp_obj_t)&cc3k_patch_version_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_patch_program), (mp_obj_t)&cc3k_patch_program_obj }, // class constants { MP_OBJ_NEW_QSTR(MP_QSTR_WEP), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WEP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_WPA), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WPA) }, { MP_OBJ_NEW_QSTR(MP_QSTR_WPA2), MP_OBJ_NEW_SMALL_INT(WLAN_SEC_WPA2) }, }; STATIC MP_DEFINE_CONST_DICT(cc3k_locals_dict, cc3k_locals_dict_table); const mod_network_nic_type_t mod_network_nic_type_cc3k = { .base = { { &mp_type_type }, .name = MP_QSTR_CC3K, .make_new = cc3k_make_new, .locals_dict = (mp_obj_t)&cc3k_locals_dict, }, .gethostbyname = cc3k_gethostbyname, .socket = cc3k_socket_socket, .close = cc3k_socket_close, .bind = cc3k_socket_bind, .listen = cc3k_socket_listen, .accept = cc3k_socket_accept, .connect = cc3k_socket_connect, .send = cc3k_socket_send, .recv = cc3k_socket_recv, .sendto = cc3k_socket_sendto, .recvfrom = cc3k_socket_recvfrom, .setsockopt = cc3k_socket_setsockopt, .settimeout = cc3k_socket_settimeout, .ioctl = cc3k_socket_ioctl, };