/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/mperrno.h" #include "py/mphal.h" #include "py/runtime.h" #include "extmod/machine_i2c.h" #if MICROPY_PY_MACHINE_I2C typedef mp_machine_soft_i2c_obj_t machine_i2c_obj_t; STATIC void mp_hal_i2c_delay(machine_i2c_obj_t *self) { // We need to use an accurate delay to get acceptable I2C // speeds (eg 1us should be not much more than 1us). mp_hal_delay_us_fast(self->us_delay); } STATIC void mp_hal_i2c_scl_low(machine_i2c_obj_t *self) { mp_hal_pin_od_low(self->scl); } STATIC int mp_hal_i2c_scl_release(machine_i2c_obj_t *self) { uint32_t count = self->us_timeout; mp_hal_pin_od_high(self->scl); mp_hal_i2c_delay(self); // For clock stretching, wait for the SCL pin to be released, with timeout. for (; mp_hal_pin_read(self->scl) == 0 && count; --count) { mp_hal_delay_us_fast(1); } if (count == 0) { return -MP_ETIMEDOUT; } return 0; // success } STATIC void mp_hal_i2c_sda_low(machine_i2c_obj_t *self) { mp_hal_pin_od_low(self->sda); } STATIC void mp_hal_i2c_sda_release(machine_i2c_obj_t *self) { mp_hal_pin_od_high(self->sda); } STATIC int mp_hal_i2c_sda_read(machine_i2c_obj_t *self) { return mp_hal_pin_read(self->sda); } STATIC int mp_hal_i2c_start(machine_i2c_obj_t *self) { mp_hal_i2c_sda_release(self); mp_hal_i2c_delay(self); int ret = mp_hal_i2c_scl_release(self); if (ret != 0) { return ret; } mp_hal_i2c_sda_low(self); mp_hal_i2c_delay(self); return 0; // success } STATIC int mp_hal_i2c_stop(machine_i2c_obj_t *self) { mp_hal_i2c_delay(self); mp_hal_i2c_sda_low(self); mp_hal_i2c_delay(self); int ret = mp_hal_i2c_scl_release(self); mp_hal_i2c_sda_release(self); mp_hal_i2c_delay(self); return ret; } STATIC void mp_hal_i2c_init(machine_i2c_obj_t *self, uint32_t freq) { self->us_delay = 500000 / freq; if (self->us_delay == 0) { self->us_delay = 1; } mp_hal_pin_open_drain(self->scl); mp_hal_pin_open_drain(self->sda); mp_hal_i2c_stop(self); // ignore error } // return value: // 0 - byte written and ack received // 1 - byte written and nack received // <0 - error, with errno being the negative of the return value STATIC int mp_hal_i2c_write_byte(machine_i2c_obj_t *self, uint8_t val) { mp_hal_i2c_delay(self); mp_hal_i2c_scl_low(self); for (int i = 7; i >= 0; i--) { if ((val >> i) & 1) { mp_hal_i2c_sda_release(self); } else { mp_hal_i2c_sda_low(self); } mp_hal_i2c_delay(self); int ret = mp_hal_i2c_scl_release(self); if (ret != 0) { mp_hal_i2c_sda_release(self); return ret; } mp_hal_i2c_scl_low(self); } mp_hal_i2c_sda_release(self); mp_hal_i2c_delay(self); int ret = mp_hal_i2c_scl_release(self); if (ret != 0) { return ret; } int ack = mp_hal_i2c_sda_read(self); mp_hal_i2c_delay(self); mp_hal_i2c_scl_low(self); return ack; } // return value: // 0 - success // <0 - error, with errno being the negative of the return value STATIC int mp_hal_i2c_read_byte(machine_i2c_obj_t *self, uint8_t *val, int nack) { mp_hal_i2c_delay(self); mp_hal_i2c_scl_low(self); mp_hal_i2c_delay(self); uint8_t data = 0; for (int i = 7; i >= 0; i--) { int ret = mp_hal_i2c_scl_release(self); if (ret != 0) { return ret; } data = (data << 1) | mp_hal_i2c_sda_read(self); mp_hal_i2c_scl_low(self); mp_hal_i2c_delay(self); } *val = data; // send ack/nack bit if (!nack) { mp_hal_i2c_sda_low(self); } mp_hal_i2c_delay(self); int ret = mp_hal_i2c_scl_release(self); if (ret != 0) { mp_hal_i2c_sda_release(self); return ret; } mp_hal_i2c_scl_low(self); mp_hal_i2c_sda_release(self); return 0; // success } // return value: // >=0 - number of acks received // <0 - error, with errno being the negative of the return value int mp_machine_soft_i2c_writeto(mp_obj_base_t *self_in, uint16_t addr, const uint8_t *src, size_t len, bool stop) { machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in; // start the I2C transaction int ret = mp_hal_i2c_start(self); if (ret != 0) { return ret; } // write the slave address ret = mp_hal_i2c_write_byte(self, addr << 1); if (ret < 0) { return ret; } else if (ret != 0) { // nack received, release the bus cleanly mp_hal_i2c_stop(self); return -MP_ENODEV; } // write the buffer to the I2C memory int num_acks = 0; while (len--) { ret = mp_hal_i2c_write_byte(self, *src++); if (ret < 0) { return ret; } else if (ret != 0) { // nack received, stop sending break; } ++num_acks; } // finish the I2C transaction if (stop) { ret = mp_hal_i2c_stop(self); if (ret != 0) { return ret; } } return num_acks; } // return value: // 0 - success // <0 - error, with errno being the negative of the return value int mp_machine_soft_i2c_readfrom(mp_obj_base_t *self_in, uint16_t addr, uint8_t *dest, size_t len, bool stop) { machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in; // start the I2C transaction int ret = mp_hal_i2c_start(self); if (ret != 0) { return ret; } // write the slave address ret = mp_hal_i2c_write_byte(self, (addr << 1) | 1); if (ret < 0) { return ret; } else if (ret != 0) { // nack received, release the bus cleanly mp_hal_i2c_stop(self); return -MP_ENODEV; } // read the bytes from the slave while (len--) { ret = mp_hal_i2c_read_byte(self, dest++, len == 0); if (ret != 0) { return ret; } } // finish the I2C transaction if (stop) { ret = mp_hal_i2c_stop(self); if (ret != 0) { return ret; } } return 0; // success } /******************************************************************************/ // MicroPython bindings for I2C STATIC void machine_i2c_obj_init_helper(machine_i2c_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_scl, ARG_sda, ARG_freq, ARG_timeout }; static const mp_arg_t allowed_args[] = { { MP_QSTR_scl, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_sda, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 255} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); self->scl = mp_hal_get_pin_obj(args[ARG_scl].u_obj); self->sda = mp_hal_get_pin_obj(args[ARG_sda].u_obj); self->us_timeout = args[ARG_timeout].u_int; mp_hal_i2c_init(self, args[ARG_freq].u_int); } STATIC mp_obj_t machine_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 0, MP_OBJ_FUN_ARGS_MAX, true); machine_i2c_obj_t *self = m_new_obj(machine_i2c_obj_t); self->base.type = &machine_i2c_type; mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); machine_i2c_obj_init_helper(self, n_args, args, &kw_args); return (mp_obj_t)self; } STATIC mp_obj_t machine_i2c_obj_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { machine_i2c_obj_init_helper(args[0], n_args - 1, args + 1, kw_args); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_init_obj, 1, machine_i2c_obj_init); STATIC mp_obj_t machine_i2c_scan(mp_obj_t self_in) { mp_obj_base_t *self = MP_OBJ_TO_PTR(self_in); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol; mp_obj_t list = mp_obj_new_list(0, NULL); // 7-bit addresses 0b0000xxx and 0b1111xxx are reserved for (int addr = 0x08; addr < 0x78; ++addr) { int ret = i2c_p->writeto(self, addr, NULL, 0, true); if (ret == 0) { mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr)); } } return list; } MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_scan_obj, machine_i2c_scan); STATIC mp_obj_t machine_i2c_start(mp_obj_t self_in) { mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol; if (i2c_p->start == NULL) { mp_raise_msg(&mp_type_OSError, "I2C operation not supported"); } int ret = i2c_p->start(self); if (ret != 0) { mp_raise_OSError(-ret); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_start_obj, machine_i2c_start); STATIC mp_obj_t machine_i2c_stop(mp_obj_t self_in) { mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol; if (i2c_p->stop == NULL) { mp_raise_msg(&mp_type_OSError, "I2C operation not supported"); } int ret = i2c_p->stop(self); if (ret != 0) { mp_raise_OSError(-ret); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_stop_obj, machine_i2c_stop); STATIC mp_obj_t machine_i2c_readinto(size_t n_args, const mp_obj_t *args) { mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol; if (i2c_p->read == NULL) { mp_raise_msg(&mp_type_OSError, "I2C operation not supported"); } // get the buffer to read into mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_WRITE); // work out if we want to send a nack at the end bool nack = (n_args == 2) ? true : mp_obj_is_true(args[2]); // do the read int ret = i2c_p->read(self, bufinfo.buf, bufinfo.len, nack); if (ret != 0) { mp_raise_OSError(-ret); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readinto_obj, 2, 3, machine_i2c_readinto); STATIC mp_obj_t machine_i2c_write(mp_obj_t self_in, mp_obj_t buf_in) { mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol; if (i2c_p->write == NULL) { mp_raise_msg(&mp_type_OSError, "I2C operation not supported"); } // get the buffer to write from mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ); // do the write int ret = i2c_p->write(self, bufinfo.buf, bufinfo.len); if (ret < 0) { mp_raise_OSError(-ret); } // return number of acks received return MP_OBJ_NEW_SMALL_INT(ret); } MP_DEFINE_CONST_FUN_OBJ_2(machine_i2c_write_obj, machine_i2c_write); STATIC mp_obj_t machine_i2c_readfrom(size_t n_args, const mp_obj_t *args) { mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol; mp_int_t addr = mp_obj_get_int(args[1]); vstr_t vstr; vstr_init_len(&vstr, mp_obj_get_int(args[2])); bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]); int ret = i2c_p->readfrom(self, addr, (uint8_t*)vstr.buf, vstr.len, stop); if (ret < 0) { mp_raise_OSError(-ret); } return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readfrom_obj, 3, 4, machine_i2c_readfrom); STATIC mp_obj_t machine_i2c_readfrom_into(size_t n_args, const mp_obj_t *args) { mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol; mp_int_t addr = mp_obj_get_int(args[1]); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE); bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]); int ret = i2c_p->readfrom(self, addr, bufinfo.buf, bufinfo.len, stop); if (ret < 0) { mp_raise_OSError(-ret); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_readfrom_into_obj, 3, 4, machine_i2c_readfrom_into); STATIC mp_obj_t machine_i2c_writeto(size_t n_args, const mp_obj_t *args) { mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(args[0]); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol; mp_int_t addr = mp_obj_get_int(args[1]); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ); bool stop = (n_args == 3) ? true : mp_obj_is_true(args[3]); int ret = i2c_p->writeto(self, addr, bufinfo.buf, bufinfo.len, stop); if (ret < 0) { mp_raise_OSError(-ret); } // return number of acks received return MP_OBJ_NEW_SMALL_INT(ret); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_i2c_writeto_obj, 3, 4, machine_i2c_writeto); STATIC int read_mem(mp_obj_t self_in, uint16_t addr, uint32_t memaddr, uint8_t addrsize, uint8_t *buf, size_t len) { mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol; uint8_t memaddr_buf[4]; size_t memaddr_len = 0; for (int16_t i = addrsize - 8; i >= 0; i -= 8) { memaddr_buf[memaddr_len++] = memaddr >> i; } int ret = i2c_p->writeto(self, addr, memaddr_buf, memaddr_len, false); if (ret != memaddr_len) { // must generate STOP i2c_p->writeto(self, addr, NULL, 0, true); return ret; } return i2c_p->readfrom(self, addr, buf, len, true); } #define MAX_MEMADDR_SIZE (4) #define BUF_STACK_SIZE (12) STATIC int write_mem(mp_obj_t self_in, uint16_t addr, uint32_t memaddr, uint8_t addrsize, const uint8_t *buf, size_t len) { mp_obj_base_t *self = (mp_obj_base_t*)MP_OBJ_TO_PTR(self_in); mp_machine_i2c_p_t *i2c_p = (mp_machine_i2c_p_t*)self->type->protocol; // need some memory to create the buffer to send; try to use stack if possible uint8_t buf2_stack[MAX_MEMADDR_SIZE + BUF_STACK_SIZE]; uint8_t *buf2; size_t buf2_alloc = 0; if (len <= BUF_STACK_SIZE) { buf2 = buf2_stack; } else { buf2_alloc = MAX_MEMADDR_SIZE + len; buf2 = m_new(uint8_t, buf2_alloc); } // create the buffer to send size_t memaddr_len = 0; for (int16_t i = addrsize - 8; i >= 0; i -= 8) { buf2[memaddr_len++] = memaddr >> i; } memcpy(buf2 + memaddr_len, buf, len); int ret = i2c_p->writeto(self, addr, buf2, memaddr_len + len, true); if (buf2_alloc != 0) { m_del(uint8_t, buf2, buf2_alloc); } return ret; } STATIC const mp_arg_t machine_i2c_mem_allowed_args[] = { { MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_arg, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_addrsize, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, }; STATIC mp_obj_t machine_i2c_readfrom_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_addr, ARG_memaddr, ARG_n, ARG_addrsize }; mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args); // create the buffer to store data into vstr_t vstr; vstr_init_len(&vstr, mp_obj_get_int(args[ARG_n].u_obj)); // do the transfer int ret = read_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int, args[ARG_addrsize].u_int, (uint8_t*)vstr.buf, vstr.len); if (ret < 0) { mp_raise_OSError(-ret); } return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_obj, 1, machine_i2c_readfrom_mem); STATIC mp_obj_t machine_i2c_readfrom_mem_into(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize }; mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args); // get the buffer to store data into mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_WRITE); // do the transfer int ret = read_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int, args[ARG_addrsize].u_int, bufinfo.buf, bufinfo.len); if (ret < 0) { mp_raise_OSError(-ret); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_readfrom_mem_into_obj, 1, machine_i2c_readfrom_mem_into); STATIC mp_obj_t machine_i2c_writeto_mem(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_addr, ARG_memaddr, ARG_buf, ARG_addrsize }; mp_arg_val_t args[MP_ARRAY_SIZE(machine_i2c_mem_allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(machine_i2c_mem_allowed_args), machine_i2c_mem_allowed_args, args); // get the buffer to write the data from mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_READ); // do the transfer int ret = write_mem(pos_args[0], args[ARG_addr].u_int, args[ARG_memaddr].u_int, args[ARG_addrsize].u_int, bufinfo.buf, bufinfo.len); if (ret < 0) { mp_raise_OSError(-ret); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_writeto_mem_obj, 1, machine_i2c_writeto_mem); STATIC const mp_rom_map_elem_t machine_i2c_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2c_init_obj) }, { MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&machine_i2c_scan_obj) }, // primitive I2C operations { MP_ROM_QSTR(MP_QSTR_start), MP_ROM_PTR(&machine_i2c_start_obj) }, { MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&machine_i2c_stop_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&machine_i2c_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&machine_i2c_write_obj) }, // standard bus operations { MP_ROM_QSTR(MP_QSTR_readfrom), MP_ROM_PTR(&machine_i2c_readfrom_obj) }, { MP_ROM_QSTR(MP_QSTR_readfrom_into), MP_ROM_PTR(&machine_i2c_readfrom_into_obj) }, { MP_ROM_QSTR(MP_QSTR_writeto), MP_ROM_PTR(&machine_i2c_writeto_obj) }, // memory operations { MP_ROM_QSTR(MP_QSTR_readfrom_mem), MP_ROM_PTR(&machine_i2c_readfrom_mem_obj) }, { MP_ROM_QSTR(MP_QSTR_readfrom_mem_into), MP_ROM_PTR(&machine_i2c_readfrom_mem_into_obj) }, { MP_ROM_QSTR(MP_QSTR_writeto_mem), MP_ROM_PTR(&machine_i2c_writeto_mem_obj) }, }; MP_DEFINE_CONST_DICT(mp_machine_soft_i2c_locals_dict, machine_i2c_locals_dict_table); int mp_machine_soft_i2c_read(mp_obj_base_t *self_in, uint8_t *dest, size_t len, bool nack) { machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in; while (len--) { int ret = mp_hal_i2c_read_byte(self, dest++, nack && (len == 0)); if (ret != 0) { return ret; } } return 0; // success } int mp_machine_soft_i2c_write(mp_obj_base_t *self_in, const uint8_t *src, size_t len) { machine_i2c_obj_t *self = (machine_i2c_obj_t*)self_in; int num_acks = 0; while (len--) { int ret = mp_hal_i2c_write_byte(self, *src++); if (ret < 0) { return ret; } else if (ret != 0) { // nack received, stop sending break; } ++num_acks; } return num_acks; } STATIC const mp_machine_i2c_p_t mp_machine_soft_i2c_p = { .start = (int(*)(mp_obj_base_t*))mp_hal_i2c_start, .stop = (int(*)(mp_obj_base_t*))mp_hal_i2c_stop, .read = mp_machine_soft_i2c_read, .write = mp_machine_soft_i2c_write, .readfrom = mp_machine_soft_i2c_readfrom, .writeto = mp_machine_soft_i2c_writeto, }; const mp_obj_type_t machine_i2c_type = { { &mp_type_type }, .name = MP_QSTR_I2C, .make_new = machine_i2c_make_new, .protocol = &mp_machine_soft_i2c_p, .locals_dict = (mp_obj_dict_t*)&mp_machine_soft_i2c_locals_dict, }; #endif // MICROPY_PY_MACHINE_I2C