/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020-2021 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "py/stream.h" #include "py/mphal.h" #include "py/mperrno.h" #include "modmachine.h" #include "hardware/uart.h" #define DEFAULT_UART_BAUDRATE (115200) #define DEFAULT_UART_BITS (8) #define DEFAULT_UART_STOP (1) #define DEFAULT_UART0_TX (0) #define DEFAULT_UART0_RX (1) #define DEFAULT_UART1_TX (4) #define DEFAULT_UART1_RX (5) #define IS_VALID_PERIPH(uart, pin) (((((pin) + 4) & 8) >> 3) == (uart)) #define IS_VALID_TX(uart, pin) (((pin) & 3) == 0 && IS_VALID_PERIPH(uart, pin)) #define IS_VALID_RX(uart, pin) (((pin) & 3) == 1 && IS_VALID_PERIPH(uart, pin)) typedef struct _machine_uart_obj_t { mp_obj_base_t base; uart_inst_t *const uart; uint8_t uart_id; uint32_t baudrate; uint8_t bits; uart_parity_t parity; uint8_t stop; uint8_t tx; uint8_t rx; uint16_t timeout; // timeout waiting for first char (in ms) uint16_t timeout_char; // timeout waiting between chars (in ms) } machine_uart_obj_t; STATIC machine_uart_obj_t machine_uart_obj[] = { {{&machine_uart_type}, uart0, 0, 0, DEFAULT_UART_BITS, UART_PARITY_NONE, DEFAULT_UART_STOP, DEFAULT_UART0_TX, DEFAULT_UART0_RX}, {{&machine_uart_type}, uart1, 1, 0, DEFAULT_UART_BITS, UART_PARITY_NONE, DEFAULT_UART_STOP, DEFAULT_UART1_TX, DEFAULT_UART1_RX}, }; STATIC const char *_parity_name[] = {"None", "0", "1"}; /******************************************************************************/ // MicroPython bindings for UART STATIC void machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, tx=%d, rx=%d, timeout=%u, timeout_char=%u)", self->uart_id, self->baudrate, self->bits, _parity_name[self->parity], self->stop, self->tx, self->rx, self->timeout, self->timeout_char); } STATIC mp_obj_t machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_id, ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx, ARG_timeout, ARG_timeout_char }; static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_INT(-1)} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; // Parse args. mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // Get UART bus. int uart_id = mp_obj_get_int(args[ARG_id].u_obj); if (uart_id < 0 || uart_id >= MP_ARRAY_SIZE(machine_uart_obj)) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id); } // Get static peripheral object. machine_uart_obj_t *self = (machine_uart_obj_t *)&machine_uart_obj[uart_id]; // Set baudrate if configured. if (args[ARG_baudrate].u_int > 0) { self->baudrate = args[ARG_baudrate].u_int; } // Set bits if configured. if (args[ARG_bits].u_int > 0) { self->bits = args[ARG_bits].u_int; } // Set parity if configured. if (args[ARG_parity].u_obj != MP_OBJ_NEW_SMALL_INT(-1)) { if (args[ARG_parity].u_obj == mp_const_none) { self->parity = UART_PARITY_NONE; } else if (mp_obj_get_int(args[ARG_parity].u_obj) & 1) { self->parity = UART_PARITY_ODD; } else { self->parity = UART_PARITY_EVEN; } } // Set stop bits if configured. if (args[ARG_stop].u_int > 0) { self->stop = args[ARG_stop].u_int; } // Set TX/RX pins if configured. if (args[ARG_tx].u_obj != mp_const_none) { int tx = mp_hal_get_pin_obj(args[ARG_tx].u_obj); if (!IS_VALID_TX(self->uart_id, tx)) { mp_raise_ValueError(MP_ERROR_TEXT("bad TX pin")); } self->tx = tx; } if (args[ARG_rx].u_obj != mp_const_none) { int rx = mp_hal_get_pin_obj(args[ARG_rx].u_obj); if (!IS_VALID_RX(self->uart_id, rx)) { mp_raise_ValueError(MP_ERROR_TEXT("bad RX pin")); } self->rx = rx; } // Set timeout if configured. if (args[ARG_timeout].u_int >= 0) { self->timeout = args[ARG_timeout].u_int; } // Set timeout_char if configured. if (args[ARG_timeout_char].u_int >= 0) { self->timeout_char = args[ARG_timeout_char].u_int; } // Initialise the UART peripheral if any arguments given, or it was not initialised previously. if (n_args > 1 || n_kw > 0 || self->baudrate == 0) { if (self->baudrate == 0) { self->baudrate = DEFAULT_UART_BAUDRATE; } // Make sure timeout_char is at least as long as a whole character (13 bits to be safe). uint32_t min_timeout_char = 13000 / self->baudrate + 1; if (self->timeout_char < min_timeout_char) { self->timeout_char = min_timeout_char; } uart_init(self->uart, self->baudrate); uart_set_format(self->uart, self->bits, self->stop, self->parity); uart_set_fifo_enabled(self->uart, true); gpio_set_function(self->tx, GPIO_FUNC_UART); gpio_set_function(self->rx, GPIO_FUNC_UART); } return MP_OBJ_FROM_PTR(self); } STATIC mp_obj_t machine_uart_any(mp_obj_t self_in) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); return MP_OBJ_NEW_SMALL_INT(uart_is_readable(self->uart)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_any_obj, machine_uart_any); STATIC mp_obj_t machine_uart_sendbreak(mp_obj_t self_in) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); uart_set_break(self->uart, true); mp_hal_delay_us(13000000 / self->baudrate + 1); uart_set_break(self->uart, false); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_uart_sendbreak_obj, machine_uart_sendbreak); STATIC const mp_rom_map_elem_t machine_uart_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&machine_uart_any_obj) }, { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&machine_uart_sendbreak_obj) }, }; STATIC MP_DEFINE_CONST_DICT(machine_uart_locals_dict, machine_uart_locals_dict_table); STATIC mp_uint_t machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); uint64_t t = time_us_64() + (uint64_t)self->timeout * 1000; uint64_t timeout_char_us = (uint64_t)self->timeout_char * 1000; uint8_t *dest = buf_in; for (size_t i = 0; i < size; i++) { // Wait for the first/next character while (!uart_is_readable(self->uart)) { if (time_us_64() > t) { // timed out if (i <= 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } else { return i; } } MICROPY_EVENT_POLL_HOOK } *dest++ = uart_get_hw(self->uart)->dr; t = time_us_64() + timeout_char_us; } return size; } STATIC mp_uint_t machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); uint64_t t = time_us_64() + (uint64_t)self->timeout * 1000; uint64_t timeout_char_us = (uint64_t)self->timeout_char * 1000; const uint8_t *src = buf_in; for (size_t i = 0; i < size; i++) { // wait for the first/next character while (!uart_is_writable(self->uart)) { if (time_us_64() > t) { // timed out if (i <= 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } else { return i; } } MICROPY_EVENT_POLL_HOOK } uart_get_hw(self->uart)->dr = *src++; t = time_us_64() + timeout_char_us; } return size; } STATIC mp_uint_t machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) { machine_uart_obj_t *self = self_in; mp_uint_t ret; if (request == MP_STREAM_POLL) { uintptr_t flags = arg; ret = 0; if ((flags & MP_STREAM_POLL_RD) && uart_is_readable(self->uart)) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && uart_is_writable(self->uart)) { ret |= MP_STREAM_POLL_WR; } } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } STATIC const mp_stream_p_t uart_stream_p = { .read = machine_uart_read, .write = machine_uart_write, .ioctl = machine_uart_ioctl, .is_text = false, }; const mp_obj_type_t machine_uart_type = { { &mp_type_type }, .name = MP_QSTR_UART, .print = machine_uart_print, .make_new = machine_uart_make_new, .getiter = mp_identity_getiter, .iternext = mp_stream_unbuffered_iter, .protocol = &uart_stream_p, .locals_dict = (mp_obj_dict_t *)&machine_uart_locals_dict, };