/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // Essentially normal Python has 1 type: Python objects // Viper has more than 1 type, and is just a more complicated (a superset of) Python. // If you declare everything in Viper as a Python object (ie omit type decls) then // it should in principle be exactly the same as Python native. // Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc. // In practice we won't have a VM but rather do this in asm which is actually very minimal. // Because it breaks strict Python equivalence it should be a completely separate // decorator. It breaks equivalence because overflow on integers wraps around. // It shouldn't break equivalence if you don't use the new types, but since the // type decls might be used in normal Python for other reasons, it's probably safest, // cleanest and clearest to make it a separate decorator. // Actually, it does break equivalence because integers default to native integers, // not Python objects. // for x in l[0:8]: can be compiled into a native loop if l has pointer type #include #include #include #include "py/emit.h" #include "py/bc.h" #if MICROPY_DEBUG_VERBOSE // print debugging info #define DEBUG_PRINT (1) #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif // wrapper around everything in this file #if N_X64 || N_X86 || N_THUMB || N_ARM || N_XTENSA // define additional generic helper macros #define ASM_MOV_LOCAL_IMM_VIA(as, local_num, imm, reg_temp) \ do { \ ASM_MOV_REG_IMM((as), (reg_temp), (imm)); \ ASM_MOV_LOCAL_REG((as), (local_num), (reg_temp)); \ } while (false) #define EMIT_NATIVE_VIPER_TYPE_ERROR(emit, ...) do { \ *emit->error_slot = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, __VA_ARGS__); \ } while (0) typedef enum { STACK_VALUE, STACK_REG, STACK_IMM, } stack_info_kind_t; // these enums must be distinct and the bottom 4 bits // must correspond to the correct MP_NATIVE_TYPE_xxx value typedef enum { VTYPE_PYOBJ = 0x00 | MP_NATIVE_TYPE_OBJ, VTYPE_BOOL = 0x00 | MP_NATIVE_TYPE_BOOL, VTYPE_INT = 0x00 | MP_NATIVE_TYPE_INT, VTYPE_UINT = 0x00 | MP_NATIVE_TYPE_UINT, VTYPE_PTR = 0x00 | MP_NATIVE_TYPE_PTR, VTYPE_PTR8 = 0x00 | MP_NATIVE_TYPE_PTR8, VTYPE_PTR16 = 0x00 | MP_NATIVE_TYPE_PTR16, VTYPE_PTR32 = 0x00 | MP_NATIVE_TYPE_PTR32, VTYPE_PTR_NONE = 0x50 | MP_NATIVE_TYPE_PTR, VTYPE_UNBOUND = 0x60 | MP_NATIVE_TYPE_OBJ, VTYPE_BUILTIN_CAST = 0x70 | MP_NATIVE_TYPE_OBJ, } vtype_kind_t; STATIC qstr vtype_to_qstr(vtype_kind_t vtype) { switch (vtype) { case VTYPE_PYOBJ: return MP_QSTR_object; case VTYPE_BOOL: return MP_QSTR_bool; case VTYPE_INT: return MP_QSTR_int; case VTYPE_UINT: return MP_QSTR_uint; case VTYPE_PTR: return MP_QSTR_ptr; case VTYPE_PTR8: return MP_QSTR_ptr8; case VTYPE_PTR16: return MP_QSTR_ptr16; case VTYPE_PTR32: return MP_QSTR_ptr32; case VTYPE_PTR_NONE: default: return MP_QSTR_None; } } typedef struct _stack_info_t { vtype_kind_t vtype; stack_info_kind_t kind; union { int u_reg; mp_int_t u_imm; } data; } stack_info_t; struct _emit_t { mp_obj_t *error_slot; int pass; bool do_viper_types; vtype_kind_t return_vtype; mp_uint_t local_vtype_alloc; vtype_kind_t *local_vtype; mp_uint_t stack_info_alloc; stack_info_t *stack_info; vtype_kind_t saved_stack_vtype; int prelude_offset; int const_table_offset; int n_state; int stack_start; int stack_size; bool last_emit_was_return_value; scope_t *scope; ASM_T *as; }; emit_t *EXPORT_FUN(new)(mp_obj_t *error_slot, mp_uint_t max_num_labels) { emit_t *emit = m_new0(emit_t, 1); emit->error_slot = error_slot; emit->as = m_new0(ASM_T, 1); mp_asm_base_init(&emit->as->base, max_num_labels); return emit; } void EXPORT_FUN(free)(emit_t *emit) { mp_asm_base_deinit(&emit->as->base, false); m_del_obj(ASM_T, emit->as); m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc); m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc); m_del_obj(emit_t, emit); } STATIC void emit_native_set_native_type(emit_t *emit, mp_uint_t op, mp_uint_t arg1, qstr arg2) { switch (op) { case MP_EMIT_NATIVE_TYPE_ENABLE: emit->do_viper_types = arg1; break; default: { vtype_kind_t type; switch (arg2) { case MP_QSTR_object: type = VTYPE_PYOBJ; break; case MP_QSTR_bool: type = VTYPE_BOOL; break; case MP_QSTR_int: type = VTYPE_INT; break; case MP_QSTR_uint: type = VTYPE_UINT; break; case MP_QSTR_ptr: type = VTYPE_PTR; break; case MP_QSTR_ptr8: type = VTYPE_PTR8; break; case MP_QSTR_ptr16: type = VTYPE_PTR16; break; case MP_QSTR_ptr32: type = VTYPE_PTR32; break; default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "unknown type '%q'", arg2); return; } if (op == MP_EMIT_NATIVE_TYPE_RETURN) { emit->return_vtype = type; } else { assert(arg1 < emit->local_vtype_alloc); emit->local_vtype[arg1] = type; } break; } } } STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest); STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg); STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num); STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num); #define STATE_START (sizeof(mp_code_state_t) / sizeof(mp_uint_t)) STATIC void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) { DEBUG_printf("start_pass(pass=%u, scope=%p)\n", pass, scope); emit->pass = pass; emit->stack_start = 0; emit->stack_size = 0; emit->last_emit_was_return_value = false; emit->scope = scope; // allocate memory for keeping track of the types of locals if (emit->local_vtype_alloc < scope->num_locals) { emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals); emit->local_vtype_alloc = scope->num_locals; } // allocate memory for keeping track of the objects on the stack // XXX don't know stack size on entry, and it should be maximum over all scopes // XXX this is such a big hack and really needs to be fixed if (emit->stack_info == NULL) { emit->stack_info_alloc = scope->stack_size + 200; emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc); } // set default type for return emit->return_vtype = VTYPE_PYOBJ; // set default type for arguments mp_uint_t num_args = emit->scope->num_pos_args + emit->scope->num_kwonly_args; if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) { num_args += 1; } if (scope->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) { num_args += 1; } for (mp_uint_t i = 0; i < num_args; i++) { emit->local_vtype[i] = VTYPE_PYOBJ; } // local variables begin unbound, and have unknown type for (mp_uint_t i = num_args; i < emit->local_vtype_alloc; i++) { emit->local_vtype[i] = VTYPE_UNBOUND; } // values on stack begin unbound for (mp_uint_t i = 0; i < emit->stack_info_alloc; i++) { emit->stack_info[i].kind = STACK_VALUE; emit->stack_info[i].vtype = VTYPE_UNBOUND; } mp_asm_base_start_pass(&emit->as->base, pass == MP_PASS_EMIT ? MP_ASM_PASS_EMIT : MP_ASM_PASS_COMPUTE); // generate code for entry to function if (emit->do_viper_types) { // right now we have a restriction of maximum of 4 arguments if (scope->num_pos_args >= 5) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "Viper functions don't currently support more than 4 arguments"); return; } // entry to function int num_locals = 0; if (pass > MP_PASS_SCOPE) { num_locals = scope->num_locals - REG_LOCAL_NUM; if (num_locals < 0) { num_locals = 0; } emit->stack_start = num_locals; num_locals += scope->stack_size; } ASM_ENTRY(emit->as, num_locals); // TODO don't load r7 if we don't need it #if N_THUMB asm_thumb_mov_reg_i32(emit->as, ASM_THUMB_REG_R7, (mp_uint_t)mp_fun_table); #elif N_ARM asm_arm_mov_reg_i32(emit->as, ASM_ARM_REG_R7, (mp_uint_t)mp_fun_table); #endif #if N_X86 for (int i = 0; i < scope->num_pos_args; i++) { if (i == 0) { asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_1); } else if (i == 1) { asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_2); } else if (i == 2) { asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_3); } else { asm_x86_mov_arg_to_r32(emit->as, i, REG_TEMP0); asm_x86_mov_r32_to_local(emit->as, REG_TEMP0, i - REG_LOCAL_NUM); } } #else for (int i = 0; i < scope->num_pos_args; i++) { if (i == 0) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_1, REG_ARG_1); } else if (i == 1) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_2, REG_ARG_2); } else if (i == 2) { ASM_MOV_REG_REG(emit->as, REG_LOCAL_3, REG_ARG_3); } else { assert(i == 3); // should be true; max 4 args is checked above ASM_MOV_LOCAL_REG(emit->as, i - REG_LOCAL_NUM, REG_ARG_4); } } #endif } else { // work out size of state (locals plus stack) emit->n_state = scope->num_locals + scope->stack_size; // allocate space on C-stack for code_state structure, which includes state ASM_ENTRY(emit->as, STATE_START + emit->n_state); // TODO don't load r7 if we don't need it #if N_THUMB asm_thumb_mov_reg_i32(emit->as, ASM_THUMB_REG_R7, (mp_uint_t)mp_fun_table); #elif N_ARM asm_arm_mov_reg_i32(emit->as, ASM_ARM_REG_R7, (mp_uint_t)mp_fun_table); #endif // prepare incoming arguments for call to mp_setup_code_state #if N_X86 asm_x86_mov_arg_to_r32(emit->as, 0, REG_ARG_1); asm_x86_mov_arg_to_r32(emit->as, 1, REG_ARG_2); asm_x86_mov_arg_to_r32(emit->as, 2, REG_ARG_3); asm_x86_mov_arg_to_r32(emit->as, 3, REG_ARG_4); #endif // set code_state.fun_bc ASM_MOV_LOCAL_REG(emit->as, offsetof(mp_code_state_t, fun_bc) / sizeof(uintptr_t), REG_ARG_1); // set code_state.ip (offset from start of this function to prelude info) // XXX this encoding may change size ASM_MOV_LOCAL_IMM_VIA(emit->as, offsetof(mp_code_state_t, ip) / sizeof(uintptr_t), emit->prelude_offset, REG_ARG_1); // put address of code_state into first arg ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0); // call mp_setup_code_state to prepare code_state structure #if N_THUMB asm_thumb_bl_ind(emit->as, mp_fun_table[MP_F_SETUP_CODE_STATE], MP_F_SETUP_CODE_STATE, ASM_THUMB_REG_R4); #elif N_ARM asm_arm_bl_ind(emit->as, mp_fun_table[MP_F_SETUP_CODE_STATE], MP_F_SETUP_CODE_STATE, ASM_ARM_REG_R4); #else ASM_CALL_IND(emit->as, mp_fun_table[MP_F_SETUP_CODE_STATE], MP_F_SETUP_CODE_STATE); #endif // cache some locals in registers if (scope->num_locals > 0) { ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_1, STATE_START + emit->n_state - 1 - 0); if (scope->num_locals > 1) { ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_2, STATE_START + emit->n_state - 1 - 1); if (scope->num_locals > 2) { ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_3, STATE_START + emit->n_state - 1 - 2); } } } // set the type of closed over variables for (mp_uint_t i = 0; i < scope->id_info_len; i++) { id_info_t *id = &scope->id_info[i]; if (id->kind == ID_INFO_KIND_CELL) { emit->local_vtype[id->local_num] = VTYPE_PYOBJ; } } } } STATIC void emit_native_end_pass(emit_t *emit) { if (!emit->last_emit_was_return_value) { ASM_EXIT(emit->as); } if (!emit->do_viper_types) { emit->prelude_offset = mp_asm_base_get_code_pos(&emit->as->base); mp_asm_base_data(&emit->as->base, 1, 0x80 | ((emit->n_state >> 7) & 0x7f)); mp_asm_base_data(&emit->as->base, 1, emit->n_state & 0x7f); mp_asm_base_data(&emit->as->base, 1, 0); // n_exc_stack mp_asm_base_data(&emit->as->base, 1, emit->scope->scope_flags); mp_asm_base_data(&emit->as->base, 1, emit->scope->num_pos_args); mp_asm_base_data(&emit->as->base, 1, emit->scope->num_kwonly_args); mp_asm_base_data(&emit->as->base, 1, emit->scope->num_def_pos_args); // write code info #if MICROPY_PERSISTENT_CODE mp_asm_base_data(&emit->as->base, 1, 5); mp_asm_base_data(&emit->as->base, 1, emit->scope->simple_name); mp_asm_base_data(&emit->as->base, 1, emit->scope->simple_name >> 8); mp_asm_base_data(&emit->as->base, 1, emit->scope->source_file); mp_asm_base_data(&emit->as->base, 1, emit->scope->source_file >> 8); #else mp_asm_base_data(&emit->as->base, 1, 1); #endif // bytecode prelude: initialise closed over variables for (int i = 0; i < emit->scope->id_info_len; i++) { id_info_t *id = &emit->scope->id_info[i]; if (id->kind == ID_INFO_KIND_CELL) { assert(id->local_num < 255); mp_asm_base_data(&emit->as->base, 1, id->local_num); // write the local which should be converted to a cell } } mp_asm_base_data(&emit->as->base, 1, 255); // end of list sentinel mp_asm_base_align(&emit->as->base, ASM_WORD_SIZE); emit->const_table_offset = mp_asm_base_get_code_pos(&emit->as->base); // write argument names as qstr objects // see comment in corresponding part of emitbc.c about the logic here for (int i = 0; i < emit->scope->num_pos_args + emit->scope->num_kwonly_args; i++) { qstr qst = MP_QSTR__star_; for (int j = 0; j < emit->scope->id_info_len; ++j) { id_info_t *id = &emit->scope->id_info[j]; if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) { qst = id->qst; break; } } mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (mp_uint_t)MP_OBJ_NEW_QSTR(qst)); } } ASM_END_PASS(emit->as); // check stack is back to zero size assert(emit->stack_size == 0); if (emit->pass == MP_PASS_EMIT) { void *f = mp_asm_base_get_code(&emit->as->base); mp_uint_t f_len = mp_asm_base_get_code_size(&emit->as->base); // compute type signature // note that the lower 4 bits of a vtype are tho correct MP_NATIVE_TYPE_xxx mp_uint_t type_sig = emit->return_vtype & 0xf; for (mp_uint_t i = 0; i < emit->scope->num_pos_args; i++) { type_sig |= (emit->local_vtype[i] & 0xf) << (i * 4 + 4); } mp_emit_glue_assign_native(emit->scope->raw_code, emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY, f, f_len, (mp_uint_t*)((byte*)f + emit->const_table_offset), emit->scope->num_pos_args, emit->scope->scope_flags, type_sig); } } STATIC bool emit_native_last_emit_was_return_value(emit_t *emit) { return emit->last_emit_was_return_value; } STATIC void adjust_stack(emit_t *emit, mp_int_t stack_size_delta) { assert((mp_int_t)emit->stack_size + stack_size_delta >= 0); emit->stack_size += stack_size_delta; if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) { emit->scope->stack_size = emit->stack_size; } #ifdef DEBUG_PRINT DEBUG_printf(" adjust_stack; stack_size=%d+%d; stack now:", emit->stack_size - stack_size_delta, stack_size_delta); for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; DEBUG_printf(" (v=%d k=%d %d)", si->vtype, si->kind, si->data.u_reg); } DEBUG_printf("\n"); #endif } STATIC void emit_native_adjust_stack_size(emit_t *emit, mp_int_t delta) { DEBUG_printf("adjust_stack_size(" INT_FMT ")\n", delta); // If we are adjusting the stack in a positive direction (pushing) then we // need to fill in values for the stack kind and vtype of the newly-pushed // entries. These should be set to "value" (ie not reg or imm) because we // should only need to adjust the stack due to a jump to this part in the // code (and hence we have settled the stack before the jump). for (mp_int_t i = 0; i < delta; i++) { stack_info_t *si = &emit->stack_info[emit->stack_size + i]; si->kind = STACK_VALUE; // TODO we don't know the vtype to use here. At the moment this is a // hack to get the case of multi comparison working. if (delta == 1) { si->vtype = emit->saved_stack_vtype; } else { si->vtype = VTYPE_PYOBJ; } } adjust_stack(emit, delta); } STATIC void emit_native_set_source_line(emit_t *emit, mp_uint_t source_line) { (void)emit; (void)source_line; } // this must be called at start of emit functions STATIC void emit_native_pre(emit_t *emit) { emit->last_emit_was_return_value = false; } // depth==0 is top, depth==1 is before top, etc STATIC stack_info_t *peek_stack(emit_t *emit, mp_uint_t depth) { return &emit->stack_info[emit->stack_size - 1 - depth]; } // depth==0 is top, depth==1 is before top, etc STATIC vtype_kind_t peek_vtype(emit_t *emit, mp_uint_t depth) { return peek_stack(emit, depth)->vtype; } // pos=1 is TOS, pos=2 is next, etc // use pos=0 for no skipping STATIC void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) { skip_stack_pos = emit->stack_size - skip_stack_pos; for (int i = 0; i < emit->stack_size; i++) { if (i != skip_stack_pos) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_REG && si->data.u_reg == reg_needed) { si->kind = STACK_VALUE; ASM_MOV_LOCAL_REG(emit->as, emit->stack_start + i, si->data.u_reg); } } } } STATIC void need_reg_all(emit_t *emit) { for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_REG) { si->kind = STACK_VALUE; ASM_MOV_LOCAL_REG(emit->as, emit->stack_start + i, si->data.u_reg); } } } STATIC void need_stack_settled(emit_t *emit) { DEBUG_printf(" need_stack_settled; stack_size=%d\n", emit->stack_size); for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_REG) { DEBUG_printf(" reg(%u) to local(%u)\n", si->data.u_reg, emit->stack_start + i); si->kind = STACK_VALUE; ASM_MOV_LOCAL_REG(emit->as, emit->stack_start + i, si->data.u_reg); } } for (int i = 0; i < emit->stack_size; i++) { stack_info_t *si = &emit->stack_info[i]; if (si->kind == STACK_IMM) { DEBUG_printf(" imm(" INT_FMT ") to local(%u)\n", si->data.u_imm, emit->stack_start + i); si->kind = STACK_VALUE; ASM_MOV_LOCAL_IMM_VIA(emit->as, emit->stack_start + i, si->data.u_imm, REG_TEMP0); } } } // pos=1 is TOS, pos=2 is next, etc STATIC void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) { need_reg_single(emit, reg_dest, pos); stack_info_t *si = &emit->stack_info[emit->stack_size - pos]; *vtype = si->vtype; switch (si->kind) { case STACK_VALUE: ASM_MOV_REG_LOCAL(emit->as, reg_dest, emit->stack_start + emit->stack_size - pos); break; case STACK_REG: if (si->data.u_reg != reg_dest) { ASM_MOV_REG_REG(emit->as, reg_dest, si->data.u_reg); } break; case STACK_IMM: ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm); break; } } // does an efficient X=pop(); discard(); push(X) // needs a (non-temp) register in case the poped element was stored in the stack STATIC void emit_fold_stack_top(emit_t *emit, int reg_dest) { stack_info_t *si = &emit->stack_info[emit->stack_size - 2]; si[0] = si[1]; if (si->kind == STACK_VALUE) { // if folded element was on the stack we need to put it in a register ASM_MOV_REG_LOCAL(emit->as, reg_dest, emit->stack_start + emit->stack_size - 1); si->kind = STACK_REG; si->data.u_reg = reg_dest; } adjust_stack(emit, -1); } // If stacked value is in a register and the register is not r1 or r2, then // *reg_dest is set to that register. Otherwise the value is put in *reg_dest. STATIC void emit_pre_pop_reg_flexible(emit_t *emit, vtype_kind_t *vtype, int *reg_dest, int not_r1, int not_r2) { emit->last_emit_was_return_value = false; stack_info_t *si = peek_stack(emit, 0); if (si->kind == STACK_REG && si->data.u_reg != not_r1 && si->data.u_reg != not_r2) { *vtype = si->vtype; *reg_dest = si->data.u_reg; need_reg_single(emit, *reg_dest, 1); } else { emit_access_stack(emit, 1, vtype, *reg_dest); } adjust_stack(emit, -1); } STATIC void emit_pre_pop_discard(emit_t *emit) { emit->last_emit_was_return_value = false; adjust_stack(emit, -1); } STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) { emit->last_emit_was_return_value = false; emit_access_stack(emit, 1, vtype, reg_dest); adjust_stack(emit, -1); } STATIC void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) { emit_pre_pop_reg(emit, vtypea, rega); emit_pre_pop_reg(emit, vtypeb, regb); } STATIC void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) { emit_pre_pop_reg(emit, vtypea, rega); emit_pre_pop_reg(emit, vtypeb, regb); emit_pre_pop_reg(emit, vtypec, regc); } STATIC void emit_post(emit_t *emit) { (void)emit; } STATIC void emit_post_top_set_vtype(emit_t *emit, vtype_kind_t new_vtype) { stack_info_t *si = &emit->stack_info[emit->stack_size - 1]; si->vtype = new_vtype; } STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) { stack_info_t *si = &emit->stack_info[emit->stack_size]; si->vtype = vtype; si->kind = STACK_REG; si->data.u_reg = reg; adjust_stack(emit, 1); } STATIC void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, mp_int_t imm) { stack_info_t *si = &emit->stack_info[emit->stack_size]; si->vtype = vtype; si->kind = STACK_IMM; si->data.u_imm = imm; adjust_stack(emit, 1); } STATIC void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); } STATIC void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); emit_post_push_reg(emit, vtypec, regc); } STATIC void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) { emit_post_push_reg(emit, vtypea, rega); emit_post_push_reg(emit, vtypeb, regb); emit_post_push_reg(emit, vtypec, regc); emit_post_push_reg(emit, vtyped, regd); } STATIC void emit_call(emit_t *emit, mp_fun_kind_t fun_kind) { need_reg_all(emit); ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind); } STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) { need_reg_all(emit); ASM_MOV_REG_IMM(emit->as, arg_reg, arg_val); ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind); } // the first arg is stored in the code aligned on a mp_uint_t boundary STATIC void emit_call_with_imm_arg_aligned(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) { need_reg_all(emit); ASM_MOV_REG_ALIGNED_IMM(emit->as, arg_reg, arg_val); ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind); } STATIC void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2) { need_reg_all(emit); ASM_MOV_REG_IMM(emit->as, arg_reg1, arg_val1); ASM_MOV_REG_IMM(emit->as, arg_reg2, arg_val2); ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind); } // the first arg is stored in the code aligned on a mp_uint_t boundary STATIC void emit_call_with_3_imm_args_and_first_aligned(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2, mp_int_t arg_val3, int arg_reg3) { need_reg_all(emit); ASM_MOV_REG_ALIGNED_IMM(emit->as, arg_reg1, arg_val1); ASM_MOV_REG_IMM(emit->as, arg_reg2, arg_val2); ASM_MOV_REG_IMM(emit->as, arg_reg3, arg_val3); ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind); } // vtype of all n_pop objects is VTYPE_PYOBJ // Will convert any items that are not VTYPE_PYOBJ to this type and put them back on the stack. // If any conversions of non-immediate values are needed, then it uses REG_ARG_1, REG_ARG_2 and REG_RET. // Otherwise, it does not use any temporary registers (but may use reg_dest before loading it with stack pointer). STATIC void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_pop) { need_reg_all(emit); // First, store any immediate values to their respective place on the stack. for (mp_uint_t i = 0; i < n_pop; i++) { stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i]; // must push any imm's to stack // must convert them to VTYPE_PYOBJ for viper code if (si->kind == STACK_IMM) { si->kind = STACK_VALUE; switch (si->vtype) { case VTYPE_PYOBJ: ASM_MOV_LOCAL_IMM_VIA(emit->as, emit->stack_start + emit->stack_size - 1 - i, si->data.u_imm, reg_dest); break; case VTYPE_BOOL: if (si->data.u_imm == 0) { ASM_MOV_LOCAL_IMM_VIA(emit->as, emit->stack_start + emit->stack_size - 1 - i, (mp_uint_t)mp_const_false, reg_dest); } else { ASM_MOV_LOCAL_IMM_VIA(emit->as, emit->stack_start + emit->stack_size - 1 - i, (mp_uint_t)mp_const_true, reg_dest); } si->vtype = VTYPE_PYOBJ; break; case VTYPE_INT: case VTYPE_UINT: ASM_MOV_LOCAL_IMM_VIA(emit->as, emit->stack_start + emit->stack_size - 1 - i, (uintptr_t)MP_OBJ_NEW_SMALL_INT(si->data.u_imm), reg_dest); si->vtype = VTYPE_PYOBJ; break; default: // not handled mp_raise_NotImplementedError("conversion to object"); } } // verify that this value is on the stack assert(si->kind == STACK_VALUE); } // Second, convert any non-VTYPE_PYOBJ to that type. for (mp_uint_t i = 0; i < n_pop; i++) { stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i]; if (si->vtype != VTYPE_PYOBJ) { mp_uint_t local_num = emit->stack_start + emit->stack_size - 1 - i; ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, local_num); emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, si->vtype, REG_ARG_2); // arg2 = type ASM_MOV_LOCAL_REG(emit->as, local_num, REG_RET); si->vtype = VTYPE_PYOBJ; DEBUG_printf(" convert_native_to_obj(local_num=" UINT_FMT ")\n", local_num); } } // Adujust the stack for a pop of n_pop items, and load the stack pointer into reg_dest. adjust_stack(emit, -n_pop); ASM_MOV_REG_LOCAL_ADDR(emit->as, reg_dest, emit->stack_start + emit->stack_size); } // vtype of all n_push objects is VTYPE_PYOBJ STATIC void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_push) { need_reg_all(emit); for (mp_uint_t i = 0; i < n_push; i++) { emit->stack_info[emit->stack_size + i].kind = STACK_VALUE; emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ; } ASM_MOV_REG_LOCAL_ADDR(emit->as, reg_dest, emit->stack_start + emit->stack_size); adjust_stack(emit, n_push); } STATIC void emit_native_label_assign(emit_t *emit, mp_uint_t l) { DEBUG_printf("label_assign(" UINT_FMT ")\n", l); emit_native_pre(emit); // need to commit stack because we can jump here from elsewhere need_stack_settled(emit); mp_asm_base_label_assign(&emit->as->base, l); emit_post(emit); } STATIC void emit_native_import_name(emit_t *emit, qstr qst) { DEBUG_printf("import_name %s\n", qstr_str(qst)); // get arguments from stack: arg2 = fromlist, arg3 = level // if using viper types these arguments must be converted to proper objects if (emit->do_viper_types) { // fromlist should be None or a tuple stack_info_t *top = peek_stack(emit, 0); if (top->vtype == VTYPE_PTR_NONE) { emit_pre_pop_discard(emit); ASM_MOV_REG_IMM(emit->as, REG_ARG_2, (mp_uint_t)mp_const_none); } else { vtype_kind_t vtype_fromlist; emit_pre_pop_reg(emit, &vtype_fromlist, REG_ARG_2); assert(vtype_fromlist == VTYPE_PYOBJ); } // level argument should be an immediate integer top = peek_stack(emit, 0); assert(top->vtype == VTYPE_INT && top->kind == STACK_IMM); ASM_MOV_REG_IMM(emit->as, REG_ARG_3, (mp_uint_t)MP_OBJ_NEW_SMALL_INT(top->data.u_imm)); emit_pre_pop_discard(emit); } else { vtype_kind_t vtype_fromlist; vtype_kind_t vtype_level; emit_pre_pop_reg_reg(emit, &vtype_fromlist, REG_ARG_2, &vtype_level, REG_ARG_3); assert(vtype_fromlist == VTYPE_PYOBJ); assert(vtype_level == VTYPE_PYOBJ); } emit_call_with_imm_arg(emit, MP_F_IMPORT_NAME, qst, REG_ARG_1); // arg1 = import name emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_import_from(emit_t *emit, qstr qst) { DEBUG_printf("import_from %s\n", qstr_str(qst)); emit_native_pre(emit); vtype_kind_t vtype_module; emit_access_stack(emit, 1, &vtype_module, REG_ARG_1); // arg1 = module assert(vtype_module == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_IMPORT_FROM, qst, REG_ARG_2); // arg2 = import name emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_import_star(emit_t *emit) { DEBUG_printf("import_star\n"); vtype_kind_t vtype_module; emit_pre_pop_reg(emit, &vtype_module, REG_ARG_1); // arg1 = module assert(vtype_module == VTYPE_PYOBJ); emit_call(emit, MP_F_IMPORT_ALL); emit_post(emit); } STATIC void emit_native_load_const_tok(emit_t *emit, mp_token_kind_t tok) { DEBUG_printf("load_const_tok(tok=%u)\n", tok); emit_native_pre(emit); vtype_kind_t vtype; mp_uint_t val; if (emit->do_viper_types) { switch (tok) { case MP_TOKEN_KW_NONE: vtype = VTYPE_PTR_NONE; val = 0; break; case MP_TOKEN_KW_FALSE: vtype = VTYPE_BOOL; val = 0; break; case MP_TOKEN_KW_TRUE: vtype = VTYPE_BOOL; val = 1; break; default: assert(tok == MP_TOKEN_ELLIPSIS); vtype = VTYPE_PYOBJ; val = (mp_uint_t)&mp_const_ellipsis_obj; break; } } else { vtype = VTYPE_PYOBJ; switch (tok) { case MP_TOKEN_KW_NONE: val = (mp_uint_t)mp_const_none; break; case MP_TOKEN_KW_FALSE: val = (mp_uint_t)mp_const_false; break; case MP_TOKEN_KW_TRUE: val = (mp_uint_t)mp_const_true; break; default: assert(tok == MP_TOKEN_ELLIPSIS); val = (mp_uint_t)&mp_const_ellipsis_obj; break; } } emit_post_push_imm(emit, vtype, val); } STATIC void emit_native_load_const_small_int(emit_t *emit, mp_int_t arg) { DEBUG_printf("load_const_small_int(int=" INT_FMT ")\n", arg); emit_native_pre(emit); if (emit->do_viper_types) { emit_post_push_imm(emit, VTYPE_INT, arg); } else { emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)MP_OBJ_NEW_SMALL_INT(arg)); } } STATIC void emit_native_load_const_str(emit_t *emit, qstr qst) { emit_native_pre(emit); // TODO: Eventually we want to be able to work with raw pointers in viper to // do native array access. For now we just load them as any other object. /* if (emit->do_viper_types) { // load a pointer to the asciiz string? emit_post_push_imm(emit, VTYPE_PTR, (mp_uint_t)qstr_str(qst)); } else */ { emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)MP_OBJ_NEW_QSTR(qst)); } } STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj) { emit_native_pre(emit); need_reg_single(emit, REG_RET, 0); ASM_MOV_REG_ALIGNED_IMM(emit->as, REG_RET, (mp_uint_t)obj); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_null(emit_t *emit) { emit_native_pre(emit); emit_post_push_imm(emit, VTYPE_PYOBJ, 0); } STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { DEBUG_printf("load_fast(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); vtype_kind_t vtype = emit->local_vtype[local_num]; if (vtype == VTYPE_UNBOUND) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "local '%q' used before type known", qst); } emit_native_pre(emit); if (local_num == 0) { emit_post_push_reg(emit, vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_post_push_reg(emit, vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_post_push_reg(emit, vtype, REG_LOCAL_3); } else { need_reg_single(emit, REG_TEMP0, 0); if (emit->do_viper_types) { ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, local_num - REG_LOCAL_NUM); } else { ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, STATE_START + emit->n_state - 1 - local_num); } emit_post_push_reg(emit, vtype, REG_TEMP0); } } STATIC void emit_native_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { DEBUG_printf("load_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); need_reg_single(emit, REG_RET, 0); emit_native_load_fast(emit, qst, local_num); vtype_kind_t vtype; int reg_base = REG_RET; emit_pre_pop_reg_flexible(emit, &vtype, ®_base, -1, -1); ASM_LOAD_REG_REG_OFFSET(emit->as, REG_RET, reg_base, 1); // closed over vars are always Python objects emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { if (kind == MP_EMIT_IDOP_LOCAL_FAST) { emit_native_load_fast(emit, qst, local_num); } else { emit_native_load_deref(emit, qst, local_num); } } STATIC void emit_native_load_global(emit_t *emit, qstr qst, int kind) { MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_LOAD_NAME); MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_LOAD_GLOBAL); emit_native_pre(emit); if (kind == MP_EMIT_IDOP_GLOBAL_NAME) { DEBUG_printf("load_name(%s)\n", qstr_str(qst)); } else { DEBUG_printf("load_global(%s)\n", qstr_str(qst)); if (emit->do_viper_types) { // check for builtin casting operators if (qst == MP_QSTR_int) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_INT); return; } else if (qst == MP_QSTR_uint) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_UINT); return; } else if (qst == MP_QSTR_ptr) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR); return; } else if (qst == MP_QSTR_ptr8) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR8); return; } else if (qst == MP_QSTR_ptr16) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR16); return; } else if (qst == MP_QSTR_ptr32) { emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR32); return; } } } emit_call_with_imm_arg(emit, MP_F_LOAD_NAME + kind, qst, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_attr(emit_t *emit, qstr qst) { // depends on type of subject: // - integer, function, pointer to integers: error // - pointer to structure: get member, quite easy // - Python object: call mp_load_attr, and needs to be typed to convert result vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_LOAD_ATTR, qst, REG_ARG_2); // arg2 = attribute name emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_method(emit_t *emit, qstr qst, bool is_super) { if (is_super) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, 3); // arg2 = dest ptr emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, 2); // arg2 = dest ptr emit_call_with_imm_arg(emit, MP_F_LOAD_SUPER_METHOD, qst, REG_ARG_1); // arg1 = method name } else { vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, qst, REG_ARG_2); // arg2 = method name } } STATIC void emit_native_load_build_class(emit_t *emit) { emit_native_pre(emit); emit_call(emit, MP_F_LOAD_BUILD_CLASS); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_load_subscr(emit_t *emit) { DEBUG_printf("load_subscr\n"); // need to compile: base[index] // pop: index, base // optimise case where index is an immediate vtype_kind_t vtype_base = peek_vtype(emit, 1); if (vtype_base == VTYPE_PYOBJ) { // standard Python subscr // TODO factor this implicit cast code with other uses of it vtype_kind_t vtype_index = peek_vtype(emit, 0); if (vtype_index == VTYPE_PYOBJ) { emit_pre_pop_reg(emit, &vtype_index, REG_ARG_2); } else { emit_pre_pop_reg(emit, &vtype_index, REG_ARG_1); emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype_index, REG_ARG_2); // arg2 = type ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); } emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_SENTINEL, REG_ARG_3); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { // viper load // TODO The different machine architectures have very different // capabilities and requirements for loads, so probably best to // write a completely separate load-optimiser for each one. stack_info_t *top = peek_stack(emit, 0); if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) { // index is an immediate mp_int_t index_value = top->data.u_imm; emit_pre_pop_discard(emit); // discard index int reg_base = REG_ARG_1; int reg_index = REG_ARG_2; emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_index); switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb ldrb r1, [r2, r3] if (index_value != 0) { // index is non-zero #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_ldrb_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); break; } #endif ASM_MOV_REG_IMM(emit->as, reg_index, index_value); ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base reg_base = reg_index; } ASM_LOAD8_REG_REG(emit->as, REG_RET, reg_base); // load from (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory if (index_value != 0) { // index is a non-zero immediate #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_ldrh_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); break; } #endif ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1); ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base reg_base = reg_index; } ASM_LOAD16_REG_REG(emit->as, REG_RET, reg_base); // load from (base+2*index) break; } case VTYPE_PTR32: { // pointer to 32-bit memory if (index_value != 0) { // index is a non-zero immediate #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_ldr_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value); break; } #endif ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2); ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base reg_base = reg_index; } ASM_LOAD32_REG_REG(emit->as, REG_RET, reg_base); // load from (base+4*index) break; } default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "can't load from '%q'", vtype_to_qstr(vtype_base)); } } else { // index is not an immediate vtype_kind_t vtype_index; int reg_index = REG_ARG_2; emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, REG_ARG_1); emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "can't load with '%q' index", vtype_to_qstr(vtype_index)); } switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb ldrb r1, [r2, r3] ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_LOAD8_REG_REG(emit->as, REG_RET, REG_ARG_1); // store value to (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_LOAD16_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+2*index) break; } case VTYPE_PTR32: { // pointer to word-size memory ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_LOAD32_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+4*index) break; } default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "can't load from '%q'", vtype_to_qstr(vtype_base)); } } emit_post_push_reg(emit, VTYPE_INT, REG_RET); } } STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) { vtype_kind_t vtype; if (local_num == 0) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1); } else if (local_num == 1) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_2); } else if (local_num == 2) { emit_pre_pop_reg(emit, &vtype, REG_LOCAL_3); } else { emit_pre_pop_reg(emit, &vtype, REG_TEMP0); if (emit->do_viper_types) { ASM_MOV_LOCAL_REG(emit->as, local_num - REG_LOCAL_NUM, REG_TEMP0); } else { ASM_MOV_LOCAL_REG(emit->as, STATE_START + emit->n_state - 1 - local_num, REG_TEMP0); } } emit_post(emit); // check types if (emit->local_vtype[local_num] == VTYPE_UNBOUND) { // first time this local is assigned, so give it a type of the object stored in it emit->local_vtype[local_num] = vtype; } else if (emit->local_vtype[local_num] != vtype) { // type of local is not the same as object stored in it EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "local '%q' has type '%q' but source is '%q'", qst, vtype_to_qstr(emit->local_vtype[local_num]), vtype_to_qstr(vtype)); } } STATIC void emit_native_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) { DEBUG_printf("store_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num); need_reg_single(emit, REG_TEMP0, 0); need_reg_single(emit, REG_TEMP1, 0); emit_native_load_fast(emit, qst, local_num); vtype_kind_t vtype; int reg_base = REG_TEMP0; emit_pre_pop_reg_flexible(emit, &vtype, ®_base, -1, -1); int reg_src = REG_TEMP1; emit_pre_pop_reg_flexible(emit, &vtype, ®_src, reg_base, reg_base); ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, reg_base, 1); emit_post(emit); } STATIC void emit_native_store_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { if (kind == MP_EMIT_IDOP_LOCAL_FAST) { emit_native_store_fast(emit, qst, local_num); } else { emit_native_store_deref(emit, qst, local_num); } } STATIC void emit_native_store_global(emit_t *emit, qstr qst, int kind) { MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_STORE_NAME); MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_STORE_GLOBAL); if (kind == MP_EMIT_IDOP_GLOBAL_NAME) { // mp_store_name, but needs conversion of object (maybe have mp_viper_store_name(obj, type)) vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_2); assert(vtype == VTYPE_PYOBJ); } else { vtype_kind_t vtype = peek_vtype(emit, 0); if (vtype == VTYPE_PYOBJ) { emit_pre_pop_reg(emit, &vtype, REG_ARG_2); } else { emit_pre_pop_reg(emit, &vtype, REG_ARG_1); emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype, REG_ARG_2); // arg2 = type ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); } } emit_call_with_imm_arg(emit, MP_F_STORE_NAME + kind, qst, REG_ARG_1); // arg1 = name emit_post(emit); } STATIC void emit_native_store_attr(emit_t *emit, qstr qst) { vtype_kind_t vtype_base, vtype_val; emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value assert(vtype_base == VTYPE_PYOBJ); assert(vtype_val == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name emit_post(emit); } STATIC void emit_native_store_subscr(emit_t *emit) { DEBUG_printf("store_subscr\n"); // need to compile: base[index] = value // pop: index, base, value // optimise case where index is an immediate vtype_kind_t vtype_base = peek_vtype(emit, 1); if (vtype_base == VTYPE_PYOBJ) { // standard Python subscr vtype_kind_t vtype_index = peek_vtype(emit, 0); vtype_kind_t vtype_value = peek_vtype(emit, 2); if (vtype_index != VTYPE_PYOBJ || vtype_value != VTYPE_PYOBJ) { // need to implicitly convert non-objects to objects // TODO do this properly emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, 3); adjust_stack(emit, 3); } emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3); emit_call(emit, MP_F_OBJ_SUBSCR); } else { // viper store // TODO The different machine architectures have very different // capabilities and requirements for stores, so probably best to // write a completely separate store-optimiser for each one. stack_info_t *top = peek_stack(emit, 0); if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) { // index is an immediate mp_int_t index_value = top->data.u_imm; emit_pre_pop_discard(emit); // discard index vtype_kind_t vtype_value; int reg_base = REG_ARG_1; int reg_index = REG_ARG_2; int reg_value = REG_ARG_3; emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_value); #if N_X86 // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX) emit_pre_pop_reg(emit, &vtype_value, reg_value); #else emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, reg_base, reg_index); #endif if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "can't store '%q'", vtype_to_qstr(vtype_value)); } switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb strb r1, [r2, r3] if (index_value != 0) { // index is non-zero #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_strb_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); break; } #endif ASM_MOV_REG_IMM(emit->as, reg_index, index_value); #if N_ARM asm_arm_strb_reg_reg_reg(emit->as, reg_value, reg_base, reg_index); return; #endif ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base reg_base = reg_index; } ASM_STORE8_REG_REG(emit->as, reg_value, reg_base); // store value to (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory if (index_value != 0) { // index is a non-zero immediate #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_strh_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); break; } #endif ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1); #if N_ARM asm_arm_strh_reg_reg_reg(emit->as, reg_value, reg_base, reg_index); return; #endif ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base reg_base = reg_index; } ASM_STORE16_REG_REG(emit->as, reg_value, reg_base); // store value to (base+2*index) break; } case VTYPE_PTR32: { // pointer to 32-bit memory if (index_value != 0) { // index is a non-zero immediate #if N_THUMB if (index_value > 0 && index_value < 32) { asm_thumb_str_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value); break; } #endif ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2); #if N_ARM asm_arm_str_reg_reg_reg(emit->as, reg_value, reg_base, reg_index); return; #endif ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base reg_base = reg_index; } ASM_STORE32_REG_REG(emit->as, reg_value, reg_base); // store value to (base+4*index) break; } default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "can't store to '%q'", vtype_to_qstr(vtype_base)); } } else { // index is not an immediate vtype_kind_t vtype_index, vtype_value; int reg_index = REG_ARG_2; int reg_value = REG_ARG_3; emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, reg_value); emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "can't store with '%q' index", vtype_to_qstr(vtype_index)); } #if N_X86 // special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX) emit_pre_pop_reg(emit, &vtype_value, reg_value); #else emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, REG_ARG_1, reg_index); #endif if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "can't store '%q'", vtype_to_qstr(vtype_value)); } switch (vtype_base) { case VTYPE_PTR8: { // pointer to 8-bit memory // TODO optimise to use thumb strb r1, [r2, r3] #if N_ARM asm_arm_strb_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); break; #endif ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_STORE8_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+index) break; } case VTYPE_PTR16: { // pointer to 16-bit memory #if N_ARM asm_arm_strh_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); break; #endif ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_STORE16_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+2*index) break; } case VTYPE_PTR32: { // pointer to 32-bit memory #if N_ARM asm_arm_str_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index); break; #endif ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base ASM_STORE32_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+4*index) break; } default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "can't store to '%q'", vtype_to_qstr(vtype_base)); } } } } STATIC void emit_native_delete_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) { if (kind == MP_EMIT_IDOP_LOCAL_FAST) { // TODO: This is not compliant implementation. We could use MP_OBJ_SENTINEL // to mark deleted vars but then every var would need to be checked on // each access. Very inefficient, so just set value to None to enable GC. emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE); emit_native_store_fast(emit, qst, local_num); } else { // TODO implement me! } } STATIC void emit_native_delete_global(emit_t *emit, qstr qst, int kind) { MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_DELETE_NAME); MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_DELETE_GLOBAL); emit_native_pre(emit); emit_call_with_imm_arg(emit, MP_F_DELETE_NAME + kind, qst, REG_ARG_1); emit_post(emit); } STATIC void emit_native_delete_attr(emit_t *emit, qstr qst) { vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base assert(vtype_base == VTYPE_PYOBJ); emit_call_with_2_imm_args(emit, MP_F_STORE_ATTR, qst, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); // arg2 = attribute name, arg3 = value (null for delete) emit_post(emit); } STATIC void emit_native_delete_subscr(emit_t *emit) { vtype_kind_t vtype_index, vtype_base; emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); // index, base assert(vtype_index == VTYPE_PYOBJ); assert(vtype_base == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); } STATIC void emit_native_subscr(emit_t *emit, int kind) { if (kind == MP_EMIT_SUBSCR_LOAD) { emit_native_load_subscr(emit); } else if (kind == MP_EMIT_SUBSCR_STORE) { emit_native_store_subscr(emit); } else { emit_native_delete_subscr(emit); } } STATIC void emit_native_attr(emit_t *emit, qstr qst, int kind) { if (kind == MP_EMIT_ATTR_LOAD) { emit_native_load_attr(emit, qst); } else if (kind == MP_EMIT_ATTR_STORE) { emit_native_store_attr(emit, qst); } else { emit_native_delete_attr(emit, qst); } } STATIC void emit_native_dup_top(emit_t *emit) { DEBUG_printf("dup_top\n"); vtype_kind_t vtype; int reg = REG_TEMP0; emit_pre_pop_reg_flexible(emit, &vtype, ®, -1, -1); emit_post_push_reg_reg(emit, vtype, reg, vtype, reg); } STATIC void emit_native_dup_top_two(emit_t *emit) { vtype_kind_t vtype0, vtype1; emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0); } STATIC void emit_native_pop_top(emit_t *emit) { DEBUG_printf("pop_top\n"); emit_pre_pop_discard(emit); emit_post(emit); } STATIC void emit_native_rot_two(emit_t *emit) { DEBUG_printf("rot_two\n"); vtype_kind_t vtype0, vtype1; emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1); emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1); } STATIC void emit_native_rot_three(emit_t *emit) { DEBUG_printf("rot_three\n"); vtype_kind_t vtype0, vtype1, vtype2; emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2); emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1); } STATIC void emit_native_jump(emit_t *emit, mp_uint_t label) { DEBUG_printf("jump(label=" UINT_FMT ")\n", label); emit_native_pre(emit); // need to commit stack because we are jumping elsewhere need_stack_settled(emit); ASM_JUMP(emit->as, label); emit_post(emit); } STATIC void emit_native_jump_helper(emit_t *emit, bool pop) { vtype_kind_t vtype = peek_vtype(emit, 0); if (vtype == VTYPE_PYOBJ) { emit_pre_pop_reg(emit, &vtype, REG_ARG_1); if (!pop) { adjust_stack(emit, 1); } emit_call(emit, MP_F_OBJ_IS_TRUE); } else { emit_pre_pop_reg(emit, &vtype, REG_RET); if (!pop) { adjust_stack(emit, 1); } if (!(vtype == VTYPE_BOOL || vtype == VTYPE_INT || vtype == VTYPE_UINT)) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "can't implicitly convert '%q' to 'bool'", vtype_to_qstr(vtype)); } } // For non-pop need to save the vtype so that emit_native_adjust_stack_size // can use it. This is a bit of a hack. if (!pop) { emit->saved_stack_vtype = vtype; } // need to commit stack because we may jump elsewhere need_stack_settled(emit); } STATIC void emit_native_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) { DEBUG_printf("pop_jump_if(cond=%u, label=" UINT_FMT ")\n", cond, label); emit_native_jump_helper(emit, true); if (cond) { ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label); } else { ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label); } emit_post(emit); } STATIC void emit_native_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) { DEBUG_printf("jump_if_or_pop(cond=%u, label=" UINT_FMT ")\n", cond, label); emit_native_jump_helper(emit, false); if (cond) { ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label); } else { ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label); } adjust_stack(emit, -1); emit_post(emit); } STATIC void emit_native_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) { (void)except_depth; emit_native_jump(emit, label & ~MP_EMIT_BREAK_FROM_FOR); // TODO properly } STATIC void emit_native_setup_with(emit_t *emit, mp_uint_t label) { // the context manager is on the top of the stack // stack: (..., ctx_mgr) // get __exit__ method vtype_kind_t vtype; emit_access_stack(emit, 1, &vtype, REG_ARG_1); // arg1 = ctx_mgr assert(vtype == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___exit__, REG_ARG_2); // stack: (..., ctx_mgr, __exit__, self) emit_pre_pop_reg(emit, &vtype, REG_ARG_3); // self emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // __exit__ emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // ctx_mgr emit_post_push_reg(emit, vtype, REG_ARG_2); // __exit__ emit_post_push_reg(emit, vtype, REG_ARG_3); // self // stack: (..., __exit__, self) // REG_ARG_1=ctx_mgr // get __enter__ method emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___enter__, REG_ARG_2); // arg2 = method name // stack: (..., __exit__, self, __enter__, self) // call __enter__ method emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2); // pointer to items, including meth and self emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 0, REG_ARG_1, 0, REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // push return value of __enter__ // stack: (..., __exit__, self, as_value) // need to commit stack because we may jump elsewhere need_stack_settled(emit); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_1, sizeof(nlr_buf_t) / sizeof(mp_uint_t)); // arg1 = pointer to nlr buf emit_call(emit, MP_F_NLR_PUSH); ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label); emit_access_stack(emit, sizeof(nlr_buf_t) / sizeof(mp_uint_t) + 1, &vtype, REG_RET); // access return value of __enter__ emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // push return value of __enter__ // stack: (..., __exit__, self, as_value, nlr_buf, as_value) } STATIC void emit_native_with_cleanup(emit_t *emit, mp_uint_t label) { // note: label+1 is available as an auxiliary label // stack: (..., __exit__, self, as_value, nlr_buf) emit_native_pre(emit); emit_call(emit, MP_F_NLR_POP); adjust_stack(emit, -(mp_int_t)(sizeof(nlr_buf_t) / sizeof(mp_uint_t)) - 1); // stack: (..., __exit__, self) // call __exit__ emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none); emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none); emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5); emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2); // jump to after with cleanup nlr_catch block adjust_stack(emit, 1); // dummy nlr_buf.prev emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE); // nlr_buf.ret_val = no exception emit_native_jump(emit, label + 1); // nlr_catch emit_native_label_assign(emit, label); // adjust stack counter for: __exit__, self, as_value adjust_stack(emit, 3); // stack: (..., __exit__, self, as_value, nlr_buf.prev, nlr_buf.ret_val) vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // get the thrown value (exc) adjust_stack(emit, -2); // discard nlr_buf.prev and as_value // stack: (..., __exit__, self) // REG_ARG_1=exc emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // self emit_pre_pop_reg(emit, &vtype, REG_ARG_3); // __exit__ adjust_stack(emit, 1); // dummy nlr_buf.prev emit_post_push_reg(emit, vtype, REG_ARG_1); // push exc to save it for later emit_post_push_reg(emit, vtype, REG_ARG_3); // __exit__ emit_post_push_reg(emit, vtype, REG_ARG_2); // self // stack: (..., exc, __exit__, self) // REG_ARG_1=exc ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_1, 0); // get type(exc) emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_2); // push type(exc) emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_1); // push exc value emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none); // traceback info // stack: (..., exc, __exit__, self, type(exc), exc, traceback) // call __exit__ method emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5); emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2); // stack: (..., exc) // if REG_RET is true then we need to replace top-of-stack with None (swallow exception) if (REG_ARG_1 != REG_RET) { ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET); } emit_call(emit, MP_F_OBJ_IS_TRUE); ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label + 1); // replace exc with None emit_pre_pop_discard(emit); emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none); // end of with cleanup nlr_catch block emit_native_label_assign(emit, label + 1); } STATIC void emit_native_setup_except(emit_t *emit, mp_uint_t label) { emit_native_pre(emit); // need to commit stack because we may jump elsewhere need_stack_settled(emit); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_1, sizeof(nlr_buf_t) / sizeof(mp_uint_t)); // arg1 = pointer to nlr buf emit_call(emit, MP_F_NLR_PUSH); ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label); emit_post(emit); } STATIC void emit_native_setup_finally(emit_t *emit, mp_uint_t label) { emit_native_setup_except(emit, label); } STATIC void emit_native_end_finally(emit_t *emit) { // logic: // exc = pop_stack // if exc == None: pass // else: raise exc // the check if exc is None is done in the MP_F_NATIVE_RAISE stub vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // get nlr_buf.ret_val emit_pre_pop_discard(emit); // discard nlr_buf.prev emit_call(emit, MP_F_NATIVE_RAISE); emit_post(emit); } STATIC void emit_native_get_iter(emit_t *emit, bool use_stack) { // perhaps the difficult one, as we want to rewrite for loops using native code // in cases where we iterate over a Python object, can we use normal runtime calls? vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_1); assert(vtype == VTYPE_PYOBJ); if (use_stack) { emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, MP_OBJ_ITER_BUF_NSLOTS); emit_call(emit, MP_F_NATIVE_GETITER); } else { // mp_getiter will allocate the iter_buf on the heap ASM_MOV_REG_IMM(emit->as, REG_ARG_2, 0); emit_call(emit, MP_F_NATIVE_GETITER); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } STATIC void emit_native_for_iter(emit_t *emit, mp_uint_t label) { emit_native_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, MP_OBJ_ITER_BUF_NSLOTS); adjust_stack(emit, MP_OBJ_ITER_BUF_NSLOTS); emit_call(emit, MP_F_NATIVE_ITERNEXT); ASM_MOV_REG_IMM(emit->as, REG_TEMP1, (mp_uint_t)MP_OBJ_STOP_ITERATION); ASM_JUMP_IF_REG_EQ(emit->as, REG_RET, REG_TEMP1, label); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_for_iter_end(emit_t *emit) { // adjust stack counter (we get here from for_iter ending, which popped the value for us) emit_native_pre(emit); adjust_stack(emit, -MP_OBJ_ITER_BUF_NSLOTS); emit_post(emit); } STATIC void emit_native_pop_block(emit_t *emit) { emit_native_pre(emit); emit_call(emit, MP_F_NLR_POP); adjust_stack(emit, -(mp_int_t)(sizeof(nlr_buf_t) / sizeof(mp_uint_t)) + 1); emit_post(emit); } STATIC void emit_native_pop_except(emit_t *emit) { (void)emit; } STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_2); if (vtype == VTYPE_PYOBJ) { emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { adjust_stack(emit, 1); EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "unary op %q not implemented", mp_unary_op_method_name[op]); } } STATIC void emit_native_binary_op(emit_t *emit, mp_binary_op_t op) { DEBUG_printf("binary_op(" UINT_FMT ")\n", op); vtype_kind_t vtype_lhs = peek_vtype(emit, 1); vtype_kind_t vtype_rhs = peek_vtype(emit, 0); if (vtype_lhs == VTYPE_INT && vtype_rhs == VTYPE_INT) { // for integers, inplace and normal ops are equivalent, so use just normal ops if (MP_BINARY_OP_INPLACE_OR <= op && op <= MP_BINARY_OP_INPLACE_POWER) { op += MP_BINARY_OP_OR - MP_BINARY_OP_INPLACE_OR; } #if N_X64 || N_X86 // special cases for x86 and shifting if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) { #if N_X64 emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X64_REG_RCX, &vtype_lhs, REG_RET); #else emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X86_REG_ECX, &vtype_lhs, REG_RET); #endif if (op == MP_BINARY_OP_LSHIFT) { ASM_LSL_REG(emit->as, REG_RET); } else { ASM_ASR_REG(emit->as, REG_RET); } emit_post_push_reg(emit, VTYPE_INT, REG_RET); return; } #endif // special cases for floor-divide and module because we dispatch to helper functions if (op == MP_BINARY_OP_FLOOR_DIVIDE || op == MP_BINARY_OP_MODULO) { emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_2, &vtype_lhs, REG_ARG_1); if (op == MP_BINARY_OP_FLOOR_DIVIDE) { emit_call(emit, MP_F_SMALL_INT_FLOOR_DIVIDE); } else { emit_call(emit, MP_F_SMALL_INT_MODULO); } emit_post_push_reg(emit, VTYPE_INT, REG_RET); return; } int reg_rhs = REG_ARG_3; emit_pre_pop_reg_flexible(emit, &vtype_rhs, ®_rhs, REG_RET, REG_ARG_2); emit_pre_pop_reg(emit, &vtype_lhs, REG_ARG_2); if (0) { // dummy #if !(N_X64 || N_X86) } else if (op == MP_BINARY_OP_LSHIFT) { ASM_LSL_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (op == MP_BINARY_OP_RSHIFT) { ASM_ASR_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); #endif } else if (op == MP_BINARY_OP_OR) { ASM_OR_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (op == MP_BINARY_OP_XOR) { ASM_XOR_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (op == MP_BINARY_OP_AND) { ASM_AND_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (op == MP_BINARY_OP_ADD) { ASM_ADD_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (op == MP_BINARY_OP_SUBTRACT) { ASM_SUB_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (op == MP_BINARY_OP_MULTIPLY) { ASM_MUL_REG_REG(emit->as, REG_ARG_2, reg_rhs); emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2); } else if (MP_BINARY_OP_LESS <= op && op <= MP_BINARY_OP_NOT_EQUAL) { // comparison ops are (in enum order): // MP_BINARY_OP_LESS // MP_BINARY_OP_MORE // MP_BINARY_OP_EQUAL // MP_BINARY_OP_LESS_EQUAL // MP_BINARY_OP_MORE_EQUAL // MP_BINARY_OP_NOT_EQUAL need_reg_single(emit, REG_RET, 0); #if N_X64 asm_x64_xor_r64_r64(emit->as, REG_RET, REG_RET); asm_x64_cmp_r64_with_r64(emit->as, reg_rhs, REG_ARG_2); static byte ops[6] = { ASM_X64_CC_JL, ASM_X64_CC_JG, ASM_X64_CC_JE, ASM_X64_CC_JLE, ASM_X64_CC_JGE, ASM_X64_CC_JNE, }; asm_x64_setcc_r8(emit->as, ops[op - MP_BINARY_OP_LESS], REG_RET); #elif N_X86 asm_x86_xor_r32_r32(emit->as, REG_RET, REG_RET); asm_x86_cmp_r32_with_r32(emit->as, reg_rhs, REG_ARG_2); static byte ops[6] = { ASM_X86_CC_JL, ASM_X86_CC_JG, ASM_X86_CC_JE, ASM_X86_CC_JLE, ASM_X86_CC_JGE, ASM_X86_CC_JNE, }; asm_x86_setcc_r8(emit->as, ops[op - MP_BINARY_OP_LESS], REG_RET); #elif N_THUMB asm_thumb_cmp_rlo_rlo(emit->as, REG_ARG_2, reg_rhs); static uint16_t ops[6] = { ASM_THUMB_OP_ITE_GE, ASM_THUMB_OP_ITE_GT, ASM_THUMB_OP_ITE_EQ, ASM_THUMB_OP_ITE_GT, ASM_THUMB_OP_ITE_GE, ASM_THUMB_OP_ITE_EQ, }; static byte ret[6] = { 0, 1, 1, 0, 1, 0, }; asm_thumb_op16(emit->as, ops[op - MP_BINARY_OP_LESS]); asm_thumb_mov_rlo_i8(emit->as, REG_RET, ret[op - MP_BINARY_OP_LESS]); asm_thumb_mov_rlo_i8(emit->as, REG_RET, ret[op - MP_BINARY_OP_LESS] ^ 1); #elif N_ARM asm_arm_cmp_reg_reg(emit->as, REG_ARG_2, reg_rhs); static uint ccs[6] = { ASM_ARM_CC_LT, ASM_ARM_CC_GT, ASM_ARM_CC_EQ, ASM_ARM_CC_LE, ASM_ARM_CC_GE, ASM_ARM_CC_NE, }; asm_arm_setcc_reg(emit->as, REG_RET, ccs[op - MP_BINARY_OP_LESS]); #elif N_XTENSA static uint8_t ccs[6] = { ASM_XTENSA_CC_LT, 0x80 | ASM_XTENSA_CC_LT, // for GT we'll swap args ASM_XTENSA_CC_EQ, 0x80 | ASM_XTENSA_CC_GE, // for LE we'll swap args ASM_XTENSA_CC_GE, ASM_XTENSA_CC_NE, }; uint8_t cc = ccs[op - MP_BINARY_OP_LESS]; if ((cc & 0x80) == 0) { asm_xtensa_setcc_reg_reg_reg(emit->as, cc, REG_RET, REG_ARG_2, reg_rhs); } else { asm_xtensa_setcc_reg_reg_reg(emit->as, cc & ~0x80, REG_RET, reg_rhs, REG_ARG_2); } #else #error not implemented #endif emit_post_push_reg(emit, VTYPE_BOOL, REG_RET); } else { // TODO other ops not yet implemented adjust_stack(emit, 1); EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "binary op %q not implemented", mp_binary_op_method_name[op]); } } else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) { emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2); bool invert = false; if (op == MP_BINARY_OP_NOT_IN) { invert = true; op = MP_BINARY_OP_IN; } else if (op == MP_BINARY_OP_IS_NOT) { invert = true; op = MP_BINARY_OP_IS; } emit_call_with_imm_arg(emit, MP_F_BINARY_OP, op, REG_ARG_1); if (invert) { ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET); emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_NOT, REG_ARG_1); } emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { adjust_stack(emit, -1); EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "can't do binary op between '%q' and '%q'", vtype_to_qstr(vtype_lhs), vtype_to_qstr(vtype_rhs)); } } STATIC void emit_native_build(emit_t *emit, mp_uint_t n_args, int kind) { // for viper: call runtime, with types of args // if wrapped in byte_array, or something, allocates memory and fills it MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_TUPLE == MP_F_BUILD_TUPLE); MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_LIST == MP_F_BUILD_LIST); MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_MAP == MP_F_BUILD_MAP); emit_native_pre(emit); if (kind == MP_EMIT_BUILD_TUPLE || kind == MP_EMIT_BUILD_LIST) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items } emit_call_with_imm_arg(emit, MP_F_BUILD_TUPLE + kind, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple/list/map } STATIC void emit_native_store_map(emit_t *emit) { vtype_kind_t vtype_key, vtype_value, vtype_map; emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map assert(vtype_key == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); assert(vtype_map == VTYPE_PYOBJ); emit_call(emit, MP_F_STORE_MAP); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map } #if MICROPY_PY_BUILTINS_SET STATIC void emit_native_build_set(emit_t *emit, mp_uint_t n_args) { emit_native_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items emit_call_with_imm_arg(emit, MP_F_BUILD_SET, n_args, REG_ARG_1); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new set } #endif #if MICROPY_PY_BUILTINS_SLICE STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args) { DEBUG_printf("build_slice %d\n", n_args); if (n_args == 2) { vtype_kind_t vtype_start, vtype_stop; emit_pre_pop_reg_reg(emit, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop assert(vtype_start == VTYPE_PYOBJ); assert(vtype_stop == VTYPE_PYOBJ); emit_call_with_imm_arg(emit, MP_F_NEW_SLICE, (mp_uint_t)mp_const_none, REG_ARG_3); // arg3 = step emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { assert(n_args == 3); vtype_kind_t vtype_start, vtype_stop, vtype_step; emit_pre_pop_reg_reg_reg(emit, &vtype_step, REG_ARG_3, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop, arg3 = step assert(vtype_start == VTYPE_PYOBJ); assert(vtype_stop == VTYPE_PYOBJ); assert(vtype_step == VTYPE_PYOBJ); emit_call(emit, MP_F_NEW_SLICE); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } #endif STATIC void emit_native_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_index) { mp_fun_kind_t f; if (kind == SCOPE_LIST_COMP) { vtype_kind_t vtype_item; emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); assert(vtype_item == VTYPE_PYOBJ); f = MP_F_LIST_APPEND; #if MICROPY_PY_BUILTINS_SET } else if (kind == SCOPE_SET_COMP) { vtype_kind_t vtype_item; emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2); assert(vtype_item == VTYPE_PYOBJ); f = MP_F_STORE_SET; #endif } else { // SCOPE_DICT_COMP vtype_kind_t vtype_key, vtype_value; emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3); assert(vtype_key == VTYPE_PYOBJ); assert(vtype_value == VTYPE_PYOBJ); f = MP_F_STORE_MAP; } vtype_kind_t vtype_collection; emit_access_stack(emit, collection_index, &vtype_collection, REG_ARG_1); assert(vtype_collection == VTYPE_PYOBJ); emit_call(emit, f); emit_post(emit); } STATIC void emit_native_unpack_sequence(emit_t *emit, mp_uint_t n_args) { DEBUG_printf("unpack_sequence %d\n", n_args); vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq assert(vtype_base == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_args); // arg3 = dest ptr emit_call_with_imm_arg(emit, MP_F_UNPACK_SEQUENCE, n_args, REG_ARG_2); // arg2 = n_args } STATIC void emit_native_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) { DEBUG_printf("unpack_ex %d %d\n", n_left, n_right); vtype_kind_t vtype_base; emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq assert(vtype_base == VTYPE_PYOBJ); emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_left + n_right + 1); // arg3 = dest ptr emit_call_with_imm_arg(emit, MP_F_UNPACK_EX, n_left | (n_right << 8), REG_ARG_2); // arg2 = n_left + n_right } STATIC void emit_native_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { // call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them emit_native_pre(emit); if (n_pos_defaults == 0 && n_kw_defaults == 0) { emit_call_with_3_imm_args_and_first_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, (mp_uint_t)scope->raw_code, REG_ARG_1, (mp_uint_t)MP_OBJ_NULL, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); } else { vtype_kind_t vtype_def_tuple, vtype_def_dict; emit_pre_pop_reg_reg(emit, &vtype_def_dict, REG_ARG_3, &vtype_def_tuple, REG_ARG_2); assert(vtype_def_tuple == VTYPE_PYOBJ); assert(vtype_def_dict == VTYPE_PYOBJ); emit_call_with_imm_arg_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, (mp_uint_t)scope->raw_code, REG_ARG_1); } emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) { emit_native_pre(emit); if (n_pos_defaults == 0 && n_kw_defaults == 0) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over); ASM_MOV_REG_IMM(emit->as, REG_ARG_2, n_closed_over); } else { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over + 2); ASM_MOV_REG_IMM(emit->as, REG_ARG_2, 0x100 | n_closed_over); } ASM_MOV_REG_ALIGNED_IMM(emit->as, REG_ARG_1, (mp_uint_t)scope->raw_code); ASM_CALL_IND(emit->as, mp_fun_table[MP_F_MAKE_CLOSURE_FROM_RAW_CODE], MP_F_MAKE_CLOSURE_FROM_RAW_CODE); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } STATIC void emit_native_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { DEBUG_printf("call_function(n_pos=" UINT_FMT ", n_kw=" UINT_FMT ", star_flags=" UINT_FMT ")\n", n_positional, n_keyword, star_flags); // TODO: in viper mode, call special runtime routine with type info for args, // and wanted type info for return, to remove need for boxing/unboxing emit_native_pre(emit); vtype_kind_t vtype_fun = peek_vtype(emit, n_positional + 2 * n_keyword); if (vtype_fun == VTYPE_BUILTIN_CAST) { // casting operator assert(n_positional == 1 && n_keyword == 0); assert(!star_flags); DEBUG_printf(" cast to %d\n", vtype_fun); vtype_kind_t vtype_cast = peek_stack(emit, 1)->data.u_imm; switch (peek_vtype(emit, 0)) { case VTYPE_PYOBJ: { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_ARG_1); emit_pre_pop_discard(emit); emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, vtype_cast, REG_ARG_2); // arg2 = type emit_post_push_reg(emit, vtype_cast, REG_RET); break; } case VTYPE_BOOL: case VTYPE_INT: case VTYPE_UINT: case VTYPE_PTR: case VTYPE_PTR8: case VTYPE_PTR16: case VTYPE_PTR32: case VTYPE_PTR_NONE: emit_fold_stack_top(emit, REG_ARG_1); emit_post_top_set_vtype(emit, vtype_cast); break; default: // this can happen when casting a cast: int(int) mp_raise_NotImplementedError("casting"); } } else { assert(vtype_fun == VTYPE_PYOBJ); if (star_flags) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 3); // pointer to args emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 0, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { if (n_positional != 0 || n_keyword != 0) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword); // pointer to args } emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function emit_call_with_imm_arg(emit, MP_F_NATIVE_CALL_FUNCTION_N_KW, n_positional | (n_keyword << 8), REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } } STATIC void emit_native_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) { if (star_flags) { emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 4); // pointer to args emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 1, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } else { emit_native_pre(emit); emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_positional + 2 * n_keyword); // pointer to items, including meth and self emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, n_positional, REG_ARG_1, n_keyword, REG_ARG_2); emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); } } STATIC void emit_native_return_value(emit_t *emit) { DEBUG_printf("return_value\n"); if (emit->do_viper_types) { if (peek_vtype(emit, 0) == VTYPE_PTR_NONE) { emit_pre_pop_discard(emit); if (emit->return_vtype == VTYPE_PYOBJ) { ASM_MOV_REG_IMM(emit->as, REG_RET, (mp_uint_t)mp_const_none); } else { ASM_MOV_REG_IMM(emit->as, REG_RET, 0); } } else { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_RET); if (vtype != emit->return_vtype) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "return expected '%q' but got '%q'", vtype_to_qstr(emit->return_vtype), vtype_to_qstr(vtype)); } } } else { vtype_kind_t vtype; emit_pre_pop_reg(emit, &vtype, REG_RET); assert(vtype == VTYPE_PYOBJ); } emit->last_emit_was_return_value = true; ASM_EXIT(emit->as); } STATIC void emit_native_raise_varargs(emit_t *emit, mp_uint_t n_args) { assert(n_args == 1); vtype_kind_t vtype_exc; emit_pre_pop_reg(emit, &vtype_exc, REG_ARG_1); // arg1 = object to raise if (vtype_exc != VTYPE_PYOBJ) { EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "must raise an object"); } // TODO probably make this 1 call to the runtime (which could even call convert, native_raise(obj, type)) emit_call(emit, MP_F_NATIVE_RAISE); } STATIC void emit_native_yield(emit_t *emit, int kind) { // not supported (for now) (void)emit; (void)kind; mp_raise_NotImplementedError("native yield"); } STATIC void emit_native_start_except_handler(emit_t *emit) { // This instruction follows an nlr_pop, so the stack counter is back to zero, when really // it should be up by a whole nlr_buf_t. We then want to pop the nlr_buf_t here, but save // the first 2 elements, so we can get the thrown value. adjust_stack(emit, 1); vtype_kind_t vtype_nlr; emit_pre_pop_reg(emit, &vtype_nlr, REG_ARG_1); // get the thrown value emit_pre_pop_discard(emit); // discard the linked-list pointer in the nlr_buf emit_post_push_reg_reg_reg(emit, VTYPE_PYOBJ, REG_ARG_1, VTYPE_PYOBJ, REG_ARG_1, VTYPE_PYOBJ, REG_ARG_1); // push the 3 exception items } STATIC void emit_native_end_except_handler(emit_t *emit) { adjust_stack(emit, -1); } const emit_method_table_t EXPORT_FUN(method_table) = { emit_native_set_native_type, emit_native_start_pass, emit_native_end_pass, emit_native_last_emit_was_return_value, emit_native_adjust_stack_size, emit_native_set_source_line, { emit_native_load_local, emit_native_load_global, }, { emit_native_store_local, emit_native_store_global, }, { emit_native_delete_local, emit_native_delete_global, }, emit_native_label_assign, emit_native_import_name, emit_native_import_from, emit_native_import_star, emit_native_load_const_tok, emit_native_load_const_small_int, emit_native_load_const_str, emit_native_load_const_obj, emit_native_load_null, emit_native_load_method, emit_native_load_build_class, emit_native_subscr, emit_native_attr, emit_native_dup_top, emit_native_dup_top_two, emit_native_pop_top, emit_native_rot_two, emit_native_rot_three, emit_native_jump, emit_native_pop_jump_if, emit_native_jump_if_or_pop, emit_native_unwind_jump, emit_native_setup_with, emit_native_with_cleanup, emit_native_setup_except, emit_native_setup_finally, emit_native_end_finally, emit_native_get_iter, emit_native_for_iter, emit_native_for_iter_end, emit_native_pop_block, emit_native_pop_except, emit_native_unary_op, emit_native_binary_op, emit_native_build, emit_native_store_map, #if MICROPY_PY_BUILTINS_SET emit_native_build_set, #endif #if MICROPY_PY_BUILTINS_SLICE emit_native_build_slice, #endif emit_native_store_comp, emit_native_unpack_sequence, emit_native_unpack_ex, emit_native_make_function, emit_native_make_closure, emit_native_call_function, emit_native_call_method, emit_native_return_value, emit_native_raise_varargs, emit_native_yield, emit_native_start_except_handler, emit_native_end_except_handler, }; #endif