/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2014 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/nlr.h" #include "py/unicode.h" #include "py/objstr.h" #include "py/objlist.h" #include "py/runtime0.h" #include "py/runtime.h" #include "py/stackctrl.h" STATIC mp_obj_t str_modulo_format(mp_obj_t pattern, mp_uint_t n_args, const mp_obj_t *args, mp_obj_t dict); STATIC mp_obj_t mp_obj_new_bytes_iterator(mp_obj_t str); STATIC NORETURN void bad_implicit_conversion(mp_obj_t self_in); /******************************************************************************/ /* str */ void mp_str_print_quoted(const mp_print_t *print, const byte *str_data, mp_uint_t str_len, bool is_bytes) { // this escapes characters, but it will be very slow to print (calling print many times) bool has_single_quote = false; bool has_double_quote = false; for (const byte *s = str_data, *top = str_data + str_len; !has_double_quote && s < top; s++) { if (*s == '\'') { has_single_quote = true; } else if (*s == '"') { has_double_quote = true; } } int quote_char = '\''; if (has_single_quote && !has_double_quote) { quote_char = '"'; } mp_printf(print, "%c", quote_char); for (const byte *s = str_data, *top = str_data + str_len; s < top; s++) { if (*s == quote_char) { mp_printf(print, "\\%c", quote_char); } else if (*s == '\\') { mp_print_str(print, "\\\\"); } else if (*s >= 0x20 && *s != 0x7f && (!is_bytes || *s < 0x80)) { // In strings, anything which is not ascii control character // is printed as is, this includes characters in range 0x80-0xff // (which can be non-Latin letters, etc.) mp_printf(print, "%c", *s); } else if (*s == '\n') { mp_print_str(print, "\\n"); } else if (*s == '\r') { mp_print_str(print, "\\r"); } else if (*s == '\t') { mp_print_str(print, "\\t"); } else { mp_printf(print, "\\x%02x", *s); } } mp_printf(print, "%c", quote_char); } #if MICROPY_PY_UJSON void mp_str_print_json(const mp_print_t *print, const byte *str_data, size_t str_len) { // for JSON spec, see http://www.ietf.org/rfc/rfc4627.txt // if we are given a valid utf8-encoded string, we will print it in a JSON-conforming way mp_print_str(print, "\""); for (const byte *s = str_data, *top = str_data + str_len; s < top; s++) { if (*s == '"' || *s == '\\') { mp_printf(print, "\\%c", *s); } else if (*s >= 32) { // this will handle normal and utf-8 encoded chars mp_printf(print, "%c", *s); } else if (*s == '\n') { mp_print_str(print, "\\n"); } else if (*s == '\r') { mp_print_str(print, "\\r"); } else if (*s == '\t') { mp_print_str(print, "\\t"); } else { // this will handle control chars mp_printf(print, "\\u%04x", *s); } } mp_print_str(print, "\""); } #endif STATIC void str_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { GET_STR_DATA_LEN(self_in, str_data, str_len); #if MICROPY_PY_UJSON if (kind == PRINT_JSON) { mp_str_print_json(print, str_data, str_len); return; } #endif #if !MICROPY_PY_BUILTINS_STR_UNICODE bool is_bytes = MP_OBJ_IS_TYPE(self_in, &mp_type_bytes); #else bool is_bytes = true; #endif if (kind == PRINT_RAW || (!MICROPY_PY_BUILTINS_STR_UNICODE && kind == PRINT_STR && !is_bytes)) { mp_printf(print, "%.*s", str_len, str_data); } else { if (is_bytes) { mp_print_str(print, "b"); } mp_str_print_quoted(print, str_data, str_len, is_bytes); } } mp_obj_t mp_obj_str_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { #if MICROPY_CPYTHON_COMPAT if (n_kw != 0) { mp_arg_error_unimpl_kw(); } #endif mp_arg_check_num(n_args, n_kw, 0, 3, false); switch (n_args) { case 0: return MP_OBJ_NEW_QSTR(MP_QSTR_); case 1: { vstr_t vstr; mp_print_t print; vstr_init_print(&vstr, 16, &print); mp_obj_print_helper(&print, args[0], PRINT_STR); return mp_obj_new_str_from_vstr(type, &vstr); } default: // 2 or 3 args // TODO: validate 2nd/3rd args if (MP_OBJ_IS_TYPE(args[0], &mp_type_bytes)) { GET_STR_DATA_LEN(args[0], str_data, str_len); GET_STR_HASH(args[0], str_hash); mp_obj_str_t *o = MP_OBJ_TO_PTR(mp_obj_new_str_of_type(type, NULL, str_len)); o->data = str_data; o->hash = str_hash; return MP_OBJ_FROM_PTR(o); } else { mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[0], &bufinfo, MP_BUFFER_READ); return mp_obj_new_str(bufinfo.buf, bufinfo.len, false); } } } STATIC mp_obj_t bytes_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { (void)type_in; #if MICROPY_CPYTHON_COMPAT if (n_kw != 0) { mp_arg_error_unimpl_kw(); } #else (void)n_kw; #endif if (n_args == 0) { return mp_const_empty_bytes; } if (MP_OBJ_IS_STR(args[0])) { if (n_args < 2 || n_args > 3) { goto wrong_args; } GET_STR_DATA_LEN(args[0], str_data, str_len); GET_STR_HASH(args[0], str_hash); mp_obj_str_t *o = MP_OBJ_TO_PTR(mp_obj_new_str_of_type(&mp_type_bytes, NULL, str_len)); o->data = str_data; o->hash = str_hash; return MP_OBJ_FROM_PTR(o); } if (n_args > 1) { goto wrong_args; } if (MP_OBJ_IS_SMALL_INT(args[0])) { uint len = MP_OBJ_SMALL_INT_VALUE(args[0]); vstr_t vstr; vstr_init_len(&vstr, len); memset(vstr.buf, 0, len); return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } // check if argument has the buffer protocol mp_buffer_info_t bufinfo; if (mp_get_buffer(args[0], &bufinfo, MP_BUFFER_READ)) { return mp_obj_new_str_of_type(&mp_type_bytes, bufinfo.buf, bufinfo.len); } vstr_t vstr; // Try to create array of exact len if initializer len is known mp_obj_t len_in = mp_obj_len_maybe(args[0]); if (len_in == MP_OBJ_NULL) { vstr_init(&vstr, 16); } else { mp_int_t len = MP_OBJ_SMALL_INT_VALUE(len_in); vstr_init(&vstr, len); } mp_obj_t iterable = mp_getiter(args[0]); mp_obj_t item; while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { mp_int_t val = mp_obj_get_int(item); #if MICROPY_CPYTHON_COMPAT if (val < 0 || val > 255) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "bytes value out of range")); } #endif vstr_add_byte(&vstr, val); } return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); wrong_args: nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "wrong number of arguments")); } // like strstr but with specified length and allows \0 bytes // TODO replace with something more efficient/standard const byte *find_subbytes(const byte *haystack, mp_uint_t hlen, const byte *needle, mp_uint_t nlen, mp_int_t direction) { if (hlen >= nlen) { mp_uint_t str_index, str_index_end; if (direction > 0) { str_index = 0; str_index_end = hlen - nlen; } else { str_index = hlen - nlen; str_index_end = 0; } for (;;) { if (memcmp(&haystack[str_index], needle, nlen) == 0) { //found return haystack + str_index; } if (str_index == str_index_end) { //not found break; } str_index += direction; } } return NULL; } // Note: this function is used to check if an object is a str or bytes, which // works because both those types use it as their binary_op method. Revisit // MP_OBJ_IS_STR_OR_BYTES if this fact changes. mp_obj_t mp_obj_str_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { // check for modulo if (op == MP_BINARY_OP_MODULO) { mp_obj_t *args; mp_uint_t n_args; mp_obj_t dict = MP_OBJ_NULL; if (MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple)) { // TODO: Support tuple subclasses? mp_obj_tuple_get(rhs_in, &n_args, &args); } else if (MP_OBJ_IS_TYPE(rhs_in, &mp_type_dict)) { args = NULL; n_args = 0; dict = rhs_in; } else { args = &rhs_in; n_args = 1; } return str_modulo_format(lhs_in, n_args, args, dict); } // from now on we need lhs type and data, so extract them mp_obj_type_t *lhs_type = mp_obj_get_type(lhs_in); GET_STR_DATA_LEN(lhs_in, lhs_data, lhs_len); // check for multiply if (op == MP_BINARY_OP_MULTIPLY) { mp_int_t n; if (!mp_obj_get_int_maybe(rhs_in, &n)) { return MP_OBJ_NULL; // op not supported } if (n <= 0) { if (lhs_type == &mp_type_str) { return MP_OBJ_NEW_QSTR(MP_QSTR_); // empty str } else { return mp_const_empty_bytes; } } vstr_t vstr; vstr_init_len(&vstr, lhs_len * n); mp_seq_multiply(lhs_data, sizeof(*lhs_data), lhs_len, n, vstr.buf); return mp_obj_new_str_from_vstr(lhs_type, &vstr); } // From now on all operations allow: // - str with str // - bytes with bytes // - bytes with bytearray // - bytes with array.array // To do this efficiently we use the buffer protocol to extract the raw // data for the rhs, but only if the lhs is a bytes object. // // NOTE: CPython does not allow comparison between bytes ard array.array // (even if the array is of type 'b'), even though it allows addition of // such types. We are not compatible with this (we do allow comparison // of bytes with anything that has the buffer protocol). It would be // easy to "fix" this with a bit of extra logic below, but it costs code // size and execution time so we don't. const byte *rhs_data; mp_uint_t rhs_len; if (lhs_type == mp_obj_get_type(rhs_in)) { GET_STR_DATA_LEN(rhs_in, rhs_data_, rhs_len_); rhs_data = rhs_data_; rhs_len = rhs_len_; } else if (lhs_type == &mp_type_bytes) { mp_buffer_info_t bufinfo; if (!mp_get_buffer(rhs_in, &bufinfo, MP_BUFFER_READ)) { return MP_OBJ_NULL; // op not supported } rhs_data = bufinfo.buf; rhs_len = bufinfo.len; } else { // incompatible types return MP_OBJ_NULL; // op not supported } switch (op) { case MP_BINARY_OP_ADD: case MP_BINARY_OP_INPLACE_ADD: { vstr_t vstr; vstr_init_len(&vstr, lhs_len + rhs_len); memcpy(vstr.buf, lhs_data, lhs_len); memcpy(vstr.buf + lhs_len, rhs_data, rhs_len); return mp_obj_new_str_from_vstr(lhs_type, &vstr); } case MP_BINARY_OP_IN: /* NOTE `a in b` is `b.__contains__(a)` */ return mp_obj_new_bool(find_subbytes(lhs_data, lhs_len, rhs_data, rhs_len, 1) != NULL); //case MP_BINARY_OP_NOT_EQUAL: // This is never passed here case MP_BINARY_OP_EQUAL: // This will be passed only for bytes, str is dealt with in mp_obj_equal() case MP_BINARY_OP_LESS: case MP_BINARY_OP_LESS_EQUAL: case MP_BINARY_OP_MORE: case MP_BINARY_OP_MORE_EQUAL: return mp_obj_new_bool(mp_seq_cmp_bytes(op, lhs_data, lhs_len, rhs_data, rhs_len)); } return MP_OBJ_NULL; // op not supported } #if !MICROPY_PY_BUILTINS_STR_UNICODE // objstrunicode defines own version const byte *str_index_to_ptr(const mp_obj_type_t *type, const byte *self_data, size_t self_len, mp_obj_t index, bool is_slice) { mp_uint_t index_val = mp_get_index(type, self_len, index, is_slice); return self_data + index_val; } #endif // This is used for both bytes and 8-bit strings. This is not used for unicode strings. STATIC mp_obj_t bytes_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) { mp_obj_type_t *type = mp_obj_get_type(self_in); GET_STR_DATA_LEN(self_in, self_data, self_len); if (value == MP_OBJ_SENTINEL) { // load #if MICROPY_PY_BUILTINS_SLICE if (MP_OBJ_IS_TYPE(index, &mp_type_slice)) { mp_bound_slice_t slice; if (!mp_seq_get_fast_slice_indexes(self_len, index, &slice)) { mp_not_implemented("only slices with step=1 (aka None) are supported"); } return mp_obj_new_str_of_type(type, self_data + slice.start, slice.stop - slice.start); } #endif mp_uint_t index_val = mp_get_index(type, self_len, index, false); // If we have unicode enabled the type will always be bytes, so take the short cut. if (MICROPY_PY_BUILTINS_STR_UNICODE || type == &mp_type_bytes) { return MP_OBJ_NEW_SMALL_INT(self_data[index_val]); } else { return mp_obj_new_str((char*)&self_data[index_val], 1, true); } } else { return MP_OBJ_NULL; // op not supported } } STATIC mp_obj_t str_join(mp_obj_t self_in, mp_obj_t arg) { assert(MP_OBJ_IS_STR_OR_BYTES(self_in)); const mp_obj_type_t *self_type = mp_obj_get_type(self_in); // get separation string GET_STR_DATA_LEN(self_in, sep_str, sep_len); // process args mp_uint_t seq_len; mp_obj_t *seq_items; if (MP_OBJ_IS_TYPE(arg, &mp_type_tuple)) { mp_obj_tuple_get(arg, &seq_len, &seq_items); } else { if (!MP_OBJ_IS_TYPE(arg, &mp_type_list)) { // arg is not a list, try to convert it to one // TODO: Try to optimize? arg = mp_type_list.make_new(&mp_type_list, 1, 0, &arg); } mp_obj_list_get(arg, &seq_len, &seq_items); } // count required length mp_uint_t required_len = 0; for (mp_uint_t i = 0; i < seq_len; i++) { if (mp_obj_get_type(seq_items[i]) != self_type) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "join expects a list of str/bytes objects consistent with self object")); } if (i > 0) { required_len += sep_len; } GET_STR_LEN(seq_items[i], l); required_len += l; } // make joined string vstr_t vstr; vstr_init_len(&vstr, required_len); byte *data = (byte*)vstr.buf; for (mp_uint_t i = 0; i < seq_len; i++) { if (i > 0) { memcpy(data, sep_str, sep_len); data += sep_len; } GET_STR_DATA_LEN(seq_items[i], s, l); memcpy(data, s, l); data += l; } // return joined string return mp_obj_new_str_from_vstr(self_type, &vstr); } mp_obj_t mp_obj_str_split(size_t n_args, const mp_obj_t *args) { const mp_obj_type_t *self_type = mp_obj_get_type(args[0]); mp_int_t splits = -1; mp_obj_t sep = mp_const_none; if (n_args > 1) { sep = args[1]; if (n_args > 2) { splits = mp_obj_get_int(args[2]); } } mp_obj_t res = mp_obj_new_list(0, NULL); GET_STR_DATA_LEN(args[0], s, len); const byte *top = s + len; if (sep == mp_const_none) { // sep not given, so separate on whitespace // Initial whitespace is not counted as split, so we pre-do it while (s < top && unichar_isspace(*s)) s++; while (s < top && splits != 0) { const byte *start = s; while (s < top && !unichar_isspace(*s)) s++; mp_obj_list_append(res, mp_obj_new_str_of_type(self_type, start, s - start)); if (s >= top) { break; } while (s < top && unichar_isspace(*s)) s++; if (splits > 0) { splits--; } } if (s < top) { mp_obj_list_append(res, mp_obj_new_str_of_type(self_type, s, top - s)); } } else { // sep given if (mp_obj_get_type(sep) != self_type) { bad_implicit_conversion(sep); } mp_uint_t sep_len; const char *sep_str = mp_obj_str_get_data(sep, &sep_len); if (sep_len == 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "empty separator")); } for (;;) { const byte *start = s; for (;;) { if (splits == 0 || s + sep_len > top) { s = top; break; } else if (memcmp(s, sep_str, sep_len) == 0) { break; } s++; } mp_obj_list_append(res, mp_obj_new_str_of_type(self_type, start, s - start)); if (s >= top) { break; } s += sep_len; if (splits > 0) { splits--; } } } return res; } #if MICROPY_PY_BUILTINS_STR_SPLITLINES STATIC mp_obj_t str_splitlines(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_keepends }; static const mp_arg_t allowed_args[] = { { MP_QSTR_keepends, MP_ARG_BOOL, {.u_bool = false} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); const mp_obj_type_t *self_type = mp_obj_get_type(pos_args[0]); mp_obj_t res = mp_obj_new_list(0, NULL); GET_STR_DATA_LEN(pos_args[0], s, len); const byte *top = s + len; while (s < top) { const byte *start = s; size_t match = 0; while (s < top) { if (*s == '\n') { match = 1; break; } else if (*s == '\r') { if (s[1] == '\n') { match = 2; } else { match = 1; } break; } s++; } size_t sub_len = s - start; if (args[ARG_keepends].u_bool) { sub_len += match; } mp_obj_list_append(res, mp_obj_new_str_of_type(self_type, start, sub_len)); s += match; } return res; } #endif STATIC mp_obj_t str_rsplit(size_t n_args, const mp_obj_t *args) { if (n_args < 3) { // If we don't have split limit, it doesn't matter from which side // we split. return mp_obj_str_split(n_args, args); } const mp_obj_type_t *self_type = mp_obj_get_type(args[0]); mp_obj_t sep = args[1]; GET_STR_DATA_LEN(args[0], s, len); mp_int_t splits = mp_obj_get_int(args[2]); mp_int_t org_splits = splits; // Preallocate list to the max expected # of elements, as we // will fill it from the end. mp_obj_list_t *res = MP_OBJ_TO_PTR(mp_obj_new_list(splits + 1, NULL)); mp_int_t idx = splits; if (sep == mp_const_none) { mp_not_implemented("rsplit(None,n)"); } else { mp_uint_t sep_len; const char *sep_str = mp_obj_str_get_data(sep, &sep_len); if (sep_len == 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "empty separator")); } const byte *beg = s; const byte *last = s + len; for (;;) { s = last - sep_len; for (;;) { if (splits == 0 || s < beg) { break; } else if (memcmp(s, sep_str, sep_len) == 0) { break; } s--; } if (s < beg || splits == 0) { res->items[idx] = mp_obj_new_str_of_type(self_type, beg, last - beg); break; } res->items[idx--] = mp_obj_new_str_of_type(self_type, s + sep_len, last - s - sep_len); last = s; if (splits > 0) { splits--; } } if (idx != 0) { // We split less parts than split limit, now go cleanup surplus mp_int_t used = org_splits + 1 - idx; memmove(res->items, &res->items[idx], used * sizeof(mp_obj_t)); mp_seq_clear(res->items, used, res->alloc, sizeof(*res->items)); res->len = used; } } return MP_OBJ_FROM_PTR(res); } STATIC mp_obj_t str_finder(mp_uint_t n_args, const mp_obj_t *args, mp_int_t direction, bool is_index) { const mp_obj_type_t *self_type = mp_obj_get_type(args[0]); assert(2 <= n_args && n_args <= 4); assert(MP_OBJ_IS_STR_OR_BYTES(args[0])); // check argument type if (mp_obj_get_type(args[1]) != self_type) { bad_implicit_conversion(args[1]); } GET_STR_DATA_LEN(args[0], haystack, haystack_len); GET_STR_DATA_LEN(args[1], needle, needle_len); const byte *start = haystack; const byte *end = haystack + haystack_len; if (n_args >= 3 && args[2] != mp_const_none) { start = str_index_to_ptr(self_type, haystack, haystack_len, args[2], true); } if (n_args >= 4 && args[3] != mp_const_none) { end = str_index_to_ptr(self_type, haystack, haystack_len, args[3], true); } const byte *p = find_subbytes(start, end - start, needle, needle_len, direction); if (p == NULL) { // not found if (is_index) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "substring not found")); } else { return MP_OBJ_NEW_SMALL_INT(-1); } } else { // found #if MICROPY_PY_BUILTINS_STR_UNICODE if (self_type == &mp_type_str) { return MP_OBJ_NEW_SMALL_INT(utf8_ptr_to_index(haystack, p)); } #endif return MP_OBJ_NEW_SMALL_INT(p - haystack); } } STATIC mp_obj_t str_find(size_t n_args, const mp_obj_t *args) { return str_finder(n_args, args, 1, false); } STATIC mp_obj_t str_rfind(size_t n_args, const mp_obj_t *args) { return str_finder(n_args, args, -1, false); } STATIC mp_obj_t str_index(size_t n_args, const mp_obj_t *args) { return str_finder(n_args, args, 1, true); } STATIC mp_obj_t str_rindex(size_t n_args, const mp_obj_t *args) { return str_finder(n_args, args, -1, true); } // TODO: (Much) more variety in args STATIC mp_obj_t str_startswith(size_t n_args, const mp_obj_t *args) { const mp_obj_type_t *self_type = mp_obj_get_type(args[0]); GET_STR_DATA_LEN(args[0], str, str_len); GET_STR_DATA_LEN(args[1], prefix, prefix_len); const byte *start = str; if (n_args > 2) { start = str_index_to_ptr(self_type, str, str_len, args[2], true); } if (prefix_len + (start - str) > str_len) { return mp_const_false; } return mp_obj_new_bool(memcmp(start, prefix, prefix_len) == 0); } STATIC mp_obj_t str_endswith(size_t n_args, const mp_obj_t *args) { GET_STR_DATA_LEN(args[0], str, str_len); GET_STR_DATA_LEN(args[1], suffix, suffix_len); if (n_args > 2) { mp_not_implemented("start/end indices"); } if (suffix_len > str_len) { return mp_const_false; } return mp_obj_new_bool(memcmp(str + (str_len - suffix_len), suffix, suffix_len) == 0); } enum { LSTRIP, RSTRIP, STRIP }; STATIC mp_obj_t str_uni_strip(int type, mp_uint_t n_args, const mp_obj_t *args) { assert(1 <= n_args && n_args <= 2); assert(MP_OBJ_IS_STR_OR_BYTES(args[0])); const mp_obj_type_t *self_type = mp_obj_get_type(args[0]); const byte *chars_to_del; uint chars_to_del_len; static const byte whitespace[] = " \t\n\r\v\f"; if (n_args == 1) { chars_to_del = whitespace; chars_to_del_len = sizeof(whitespace); } else { if (mp_obj_get_type(args[1]) != self_type) { bad_implicit_conversion(args[1]); } GET_STR_DATA_LEN(args[1], s, l); chars_to_del = s; chars_to_del_len = l; } GET_STR_DATA_LEN(args[0], orig_str, orig_str_len); mp_uint_t first_good_char_pos = 0; bool first_good_char_pos_set = false; mp_uint_t last_good_char_pos = 0; mp_uint_t i = 0; mp_int_t delta = 1; if (type == RSTRIP) { i = orig_str_len - 1; delta = -1; } for (mp_uint_t len = orig_str_len; len > 0; len--) { if (find_subbytes(chars_to_del, chars_to_del_len, &orig_str[i], 1, 1) == NULL) { if (!first_good_char_pos_set) { first_good_char_pos_set = true; first_good_char_pos = i; if (type == LSTRIP) { last_good_char_pos = orig_str_len - 1; break; } else if (type == RSTRIP) { first_good_char_pos = 0; last_good_char_pos = i; break; } } last_good_char_pos = i; } i += delta; } if (!first_good_char_pos_set) { // string is all whitespace, return '' if (self_type == &mp_type_str) { return MP_OBJ_NEW_QSTR(MP_QSTR_); } else { return mp_const_empty_bytes; } } assert(last_good_char_pos >= first_good_char_pos); //+1 to accomodate the last character mp_uint_t stripped_len = last_good_char_pos - first_good_char_pos + 1; if (stripped_len == orig_str_len) { // If nothing was stripped, don't bother to dup original string // TODO: watch out for this case when we'll get to bytearray.strip() assert(first_good_char_pos == 0); return args[0]; } return mp_obj_new_str_of_type(self_type, orig_str + first_good_char_pos, stripped_len); } STATIC mp_obj_t str_strip(size_t n_args, const mp_obj_t *args) { return str_uni_strip(STRIP, n_args, args); } STATIC mp_obj_t str_lstrip(size_t n_args, const mp_obj_t *args) { return str_uni_strip(LSTRIP, n_args, args); } STATIC mp_obj_t str_rstrip(size_t n_args, const mp_obj_t *args) { return str_uni_strip(RSTRIP, n_args, args); } // Takes an int arg, but only parses unsigned numbers, and only changes // *num if at least one digit was parsed. STATIC const char *str_to_int(const char *str, const char *top, int *num) { if (str < top && '0' <= *str && *str <= '9') { *num = 0; do { *num = *num * 10 + (*str - '0'); str++; } while (str < top && '0' <= *str && *str <= '9'); } return str; } STATIC bool isalignment(char ch) { return ch && strchr("<>=^", ch) != NULL; } STATIC bool istype(char ch) { return ch && strchr("bcdeEfFgGnosxX%", ch) != NULL; } STATIC bool arg_looks_integer(mp_obj_t arg) { return MP_OBJ_IS_TYPE(arg, &mp_type_bool) || MP_OBJ_IS_INT(arg); } STATIC bool arg_looks_numeric(mp_obj_t arg) { return arg_looks_integer(arg) #if MICROPY_PY_BUILTINS_FLOAT || mp_obj_is_float(arg) #endif ; } STATIC mp_obj_t arg_as_int(mp_obj_t arg) { #if MICROPY_PY_BUILTINS_FLOAT if (mp_obj_is_float(arg)) { return mp_obj_new_int_from_float(mp_obj_float_get(arg)); } #endif return arg; } STATIC NORETURN void terse_str_format_value_error(void) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "bad format string")); } STATIC vstr_t mp_obj_str_format_helper(const char *str, const char *top, int *arg_i, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kwargs) { vstr_t vstr; mp_print_t print; vstr_init_print(&vstr, 16, &print); for (; str < top; str++) { if (*str == '}') { str++; if (str < top && *str == '}') { vstr_add_byte(&vstr, '}'); continue; } if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "single '}' encountered in format string")); } } if (*str != '{') { vstr_add_byte(&vstr, *str); continue; } str++; if (str < top && *str == '{') { vstr_add_byte(&vstr, '{'); continue; } // replacement_field ::= "{" [field_name] ["!" conversion] [":" format_spec] "}" const char *field_name = NULL; const char *field_name_top = NULL; char conversion = '\0'; const char *format_spec = NULL; if (str < top && *str != '}' && *str != '!' && *str != ':') { field_name = (const char *)str; while (str < top && *str != '}' && *str != '!' && *str != ':') { ++str; } field_name_top = (const char *)str; } // conversion ::= "r" | "s" if (str < top && *str == '!') { str++; if (str < top && (*str == 'r' || *str == 's')) { conversion = *str++; } else { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "bad conversion specifier")); } else { if (str >= top) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "end of format while looking for conversion specifier")); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "unknown conversion specifier %c", *str)); } } } } if (str < top && *str == ':') { str++; // {:} is the same as {}, which is the same as {!s} // This makes a difference when passing in a True or False // '{}'.format(True) returns 'True' // '{:d}'.format(True) returns '1' // So we treat {:} as {} and this later gets treated to be {!s} if (*str != '}') { format_spec = str; for (int nest = 1; str < top;) { if (*str == '{') { ++nest; } else if (*str == '}') { if (--nest == 0) { break; } } ++str; } } } if (str >= top) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "unmatched '{' in format")); } } if (*str != '}') { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "expected ':' after format specifier")); } } mp_obj_t arg = mp_const_none; if (field_name) { int index = 0; if (MP_LIKELY(unichar_isdigit(*field_name))) { if (*arg_i > 0) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't switch from automatic field numbering to manual field specification")); } } field_name = str_to_int(field_name, field_name_top, &index); if ((uint)index >= n_args - 1) { nlr_raise(mp_obj_new_exception_msg(&mp_type_IndexError, "tuple index out of range")); } arg = args[index + 1]; *arg_i = -1; } else { const char *lookup; for (lookup = field_name; lookup < field_name_top && *lookup != '.' && *lookup != '['; lookup++); mp_obj_t field_q = mp_obj_new_str(field_name, lookup - field_name, true/*?*/); field_name = lookup; mp_map_elem_t *key_elem = mp_map_lookup(kwargs, field_q, MP_MAP_LOOKUP); if (key_elem == NULL) { nlr_raise(mp_obj_new_exception_arg1(&mp_type_KeyError, field_q)); } arg = key_elem->value; } if (field_name < field_name_top) { mp_not_implemented("attributes not supported yet"); } } else { if (*arg_i < 0) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't switch from manual field specification to automatic field numbering")); } } if ((uint)*arg_i >= n_args - 1) { nlr_raise(mp_obj_new_exception_msg(&mp_type_IndexError, "tuple index out of range")); } arg = args[(*arg_i) + 1]; (*arg_i)++; } if (!format_spec && !conversion) { conversion = 's'; } if (conversion) { mp_print_kind_t print_kind; if (conversion == 's') { print_kind = PRINT_STR; } else { assert(conversion == 'r'); print_kind = PRINT_REPR; } vstr_t arg_vstr; mp_print_t arg_print; vstr_init_print(&arg_vstr, 16, &arg_print); mp_obj_print_helper(&arg_print, arg, print_kind); arg = mp_obj_new_str_from_vstr(&mp_type_str, &arg_vstr); } char sign = '\0'; char fill = '\0'; char align = '\0'; int width = -1; int precision = -1; char type = '\0'; int flags = 0; if (format_spec) { // The format specifier (from http://docs.python.org/2/library/string.html#formatspec) // // [[fill]align][sign][#][0][width][,][.precision][type] // fill ::= // align ::= "<" | ">" | "=" | "^" // sign ::= "+" | "-" | " " // width ::= integer // precision ::= integer // type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%" // recursively call the formatter to format any nested specifiers MP_STACK_CHECK(); vstr_t format_spec_vstr = mp_obj_str_format_helper(format_spec, str, arg_i, n_args, args, kwargs); const char *s = vstr_null_terminated_str(&format_spec_vstr); const char *stop = s + format_spec_vstr.len; if (isalignment(*s)) { align = *s++; } else if (*s && isalignment(s[1])) { fill = *s++; align = *s++; } if (*s == '+' || *s == '-' || *s == ' ') { if (*s == '+') { flags |= PF_FLAG_SHOW_SIGN; } else if (*s == ' ') { flags |= PF_FLAG_SPACE_SIGN; } sign = *s++; } if (*s == '#') { flags |= PF_FLAG_SHOW_PREFIX; s++; } if (*s == '0') { if (!align) { align = '='; } if (!fill) { fill = '0'; } } s = str_to_int(s, stop, &width); if (*s == ',') { flags |= PF_FLAG_SHOW_COMMA; s++; } if (*s == '.') { s++; s = str_to_int(s, stop, &precision); } if (istype(*s)) { type = *s++; } if (*s) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid format specifier")); } } vstr_clear(&format_spec_vstr); } if (!align) { if (arg_looks_numeric(arg)) { align = '>'; } else { align = '<'; } } if (!fill) { fill = ' '; } if (sign) { if (type == 's') { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "sign not allowed in string format specifier")); } } if (type == 'c') { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "sign not allowed with integer format specifier 'c'")); } } } else { sign = '-'; } switch (align) { case '<': flags |= PF_FLAG_LEFT_ADJUST; break; case '=': flags |= PF_FLAG_PAD_AFTER_SIGN; break; case '^': flags |= PF_FLAG_CENTER_ADJUST; break; } if (arg_looks_integer(arg)) { switch (type) { case 'b': mp_print_mp_int(&print, arg, 2, 'a', flags, fill, width, 0); continue; case 'c': { char ch = mp_obj_get_int(arg); mp_print_strn(&print, &ch, 1, flags, fill, width); continue; } case '\0': // No explicit format type implies 'd' case 'n': // I don't think we support locales in uPy so use 'd' case 'd': mp_print_mp_int(&print, arg, 10, 'a', flags, fill, width, 0); continue; case 'o': if (flags & PF_FLAG_SHOW_PREFIX) { flags |= PF_FLAG_SHOW_OCTAL_LETTER; } mp_print_mp_int(&print, arg, 8, 'a', flags, fill, width, 0); continue; case 'X': case 'x': mp_print_mp_int(&print, arg, 16, type - ('X' - 'A'), flags, fill, width, 0); continue; case 'e': case 'E': case 'f': case 'F': case 'g': case 'G': case '%': // The floating point formatters all work with anything that // looks like an integer break; default: if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "unknown format code '%c' for object of type '%s'", type, mp_obj_get_type_str(arg))); } } } // NOTE: no else here. We need the e, f, g etc formats for integer // arguments (from above if) to take this if. if (arg_looks_numeric(arg)) { if (!type) { // Even though the docs say that an unspecified type is the same // as 'g', there is one subtle difference, when the exponent // is one less than the precision. // // '{:10.1}'.format(0.0) ==> '0e+00' // '{:10.1g}'.format(0.0) ==> '0' // // TODO: Figure out how to deal with this. // // A proper solution would involve adding a special flag // or something to format_float, and create a format_double // to deal with doubles. In order to fix this when using // sprintf, we'd need to use the e format and tweak the // returned result to strip trailing zeros like the g format // does. // // {:10.3} and {:10.2e} with 1.23e2 both produce 1.23e+02 // but with 1.e2 you get 1e+02 and 1.00e+02 // // Stripping the trailing 0's (like g) does would make the // e format give us the right format. // // CPython sources say: // Omitted type specifier. Behaves in the same way as repr(x) // and str(x) if no precision is given, else like 'g', but with // at least one digit after the decimal point. */ type = 'g'; } if (type == 'n') { type = 'g'; } switch (type) { #if MICROPY_PY_BUILTINS_FLOAT case 'e': case 'E': case 'f': case 'F': case 'g': case 'G': mp_print_float(&print, mp_obj_get_float(arg), type, flags, fill, width, precision); break; case '%': flags |= PF_FLAG_ADD_PERCENT; #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT #define F100 100.0F #else #define F100 100.0 #endif mp_print_float(&print, mp_obj_get_float(arg) * F100, 'f', flags, fill, width, precision); #undef F100 break; #endif default: if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "unknown format code '%c' for object of type 'float'", type, mp_obj_get_type_str(arg))); } } } else { // arg doesn't look like a number if (align == '=') { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "'=' alignment not allowed in string format specifier")); } } switch (type) { case '\0': // no explicit format type implies 's' case 's': { mp_uint_t slen; const char *s = mp_obj_str_get_data(arg, &slen); if (precision < 0) { precision = slen; } if (slen > (mp_uint_t)precision) { slen = precision; } mp_print_strn(&print, s, slen, flags, fill, width); break; } default: if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "unknown format code '%c' for object of type 'str'", type, mp_obj_get_type_str(arg))); } } } } return vstr; } mp_obj_t mp_obj_str_format(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs) { assert(MP_OBJ_IS_STR_OR_BYTES(args[0])); GET_STR_DATA_LEN(args[0], str, len); int arg_i = 0; vstr_t vstr = mp_obj_str_format_helper((const char*)str, (const char*)str + len, &arg_i, n_args, args, kwargs); return mp_obj_new_str_from_vstr(&mp_type_str, &vstr); } STATIC mp_obj_t str_modulo_format(mp_obj_t pattern, mp_uint_t n_args, const mp_obj_t *args, mp_obj_t dict) { assert(MP_OBJ_IS_STR_OR_BYTES(pattern)); GET_STR_DATA_LEN(pattern, str, len); const byte *start_str = str; bool is_bytes = MP_OBJ_IS_TYPE(pattern, &mp_type_bytes); int arg_i = 0; vstr_t vstr; mp_print_t print; vstr_init_print(&vstr, 16, &print); for (const byte *top = str + len; str < top; str++) { mp_obj_t arg = MP_OBJ_NULL; if (*str != '%') { vstr_add_byte(&vstr, *str); continue; } if (++str >= top) { goto incomplete_format; } if (*str == '%') { vstr_add_byte(&vstr, '%'); continue; } // Dictionary value lookup if (*str == '(') { const byte *key = ++str; while (*str != ')') { if (str >= top) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "incomplete format key")); } } ++str; } mp_obj_t k_obj = mp_obj_new_str((const char*)key, str - key, true); arg = mp_obj_dict_get(dict, k_obj); str++; } int flags = 0; char fill = ' '; int alt = 0; while (str < top) { if (*str == '-') flags |= PF_FLAG_LEFT_ADJUST; else if (*str == '+') flags |= PF_FLAG_SHOW_SIGN; else if (*str == ' ') flags |= PF_FLAG_SPACE_SIGN; else if (*str == '#') alt = PF_FLAG_SHOW_PREFIX; else if (*str == '0') { flags |= PF_FLAG_PAD_AFTER_SIGN; fill = '0'; } else break; str++; } // parse width, if it exists int width = 0; if (str < top) { if (*str == '*') { if ((uint)arg_i >= n_args) { goto not_enough_args; } width = mp_obj_get_int(args[arg_i++]); str++; } else { str = (const byte*)str_to_int((const char*)str, (const char*)top, &width); } } int prec = -1; if (str < top && *str == '.') { if (++str < top) { if (*str == '*') { if ((uint)arg_i >= n_args) { goto not_enough_args; } prec = mp_obj_get_int(args[arg_i++]); str++; } else { prec = 0; str = (const byte*)str_to_int((const char*)str, (const char*)top, &prec); } } } if (str >= top) { incomplete_format: if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "incomplete format")); } } // Tuple value lookup if (arg == MP_OBJ_NULL) { if ((uint)arg_i >= n_args) { not_enough_args: nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "not enough arguments for format string")); } arg = args[arg_i++]; } switch (*str) { case 'c': if (MP_OBJ_IS_STR(arg)) { mp_uint_t slen; const char *s = mp_obj_str_get_data(arg, &slen); if (slen != 1) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "%%c requires int or char")); } mp_print_strn(&print, s, 1, flags, ' ', width); } else if (arg_looks_integer(arg)) { char ch = mp_obj_get_int(arg); mp_print_strn(&print, &ch, 1, flags, ' ', width); } else { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "integer required")); } break; case 'd': case 'i': case 'u': mp_print_mp_int(&print, arg_as_int(arg), 10, 'a', flags, fill, width, prec); break; #if MICROPY_PY_BUILTINS_FLOAT case 'e': case 'E': case 'f': case 'F': case 'g': case 'G': mp_print_float(&print, mp_obj_get_float(arg), *str, flags, fill, width, prec); break; #endif case 'o': if (alt) { flags |= (PF_FLAG_SHOW_PREFIX | PF_FLAG_SHOW_OCTAL_LETTER); } mp_print_mp_int(&print, arg, 8, 'a', flags, fill, width, prec); break; case 'r': case 's': { vstr_t arg_vstr; mp_print_t arg_print; vstr_init_print(&arg_vstr, 16, &arg_print); mp_print_kind_t print_kind = (*str == 'r' ? PRINT_REPR : PRINT_STR); if (print_kind == PRINT_STR && is_bytes && MP_OBJ_IS_TYPE(arg, &mp_type_bytes)) { // If we have something like b"%s" % b"1", bytes arg should be // printed undecorated. print_kind = PRINT_RAW; } mp_obj_print_helper(&arg_print, arg, print_kind); uint vlen = arg_vstr.len; if (prec < 0) { prec = vlen; } if (vlen > (uint)prec) { vlen = prec; } mp_print_strn(&print, arg_vstr.buf, vlen, flags, ' ', width); vstr_clear(&arg_vstr); break; } case 'X': case 'x': mp_print_mp_int(&print, arg, 16, *str - ('X' - 'A'), flags | alt, fill, width, prec); break; default: if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { terse_str_format_value_error(); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "unsupported format character '%c' (0x%x) at index %d", *str, *str, str - start_str)); } } } if ((uint)arg_i != n_args) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "not all arguments converted during string formatting")); } return mp_obj_new_str_from_vstr(is_bytes ? &mp_type_bytes : &mp_type_str, &vstr); } // The implementation is optimized, returning the original string if there's // nothing to replace. STATIC mp_obj_t str_replace(size_t n_args, const mp_obj_t *args) { assert(MP_OBJ_IS_STR_OR_BYTES(args[0])); mp_int_t max_rep = -1; if (n_args == 4) { max_rep = mp_obj_get_int(args[3]); if (max_rep == 0) { return args[0]; } else if (max_rep < 0) { max_rep = -1; } } // if max_rep is still -1 by this point we will need to do all possible replacements // check argument types const mp_obj_type_t *self_type = mp_obj_get_type(args[0]); if (mp_obj_get_type(args[1]) != self_type) { bad_implicit_conversion(args[1]); } if (mp_obj_get_type(args[2]) != self_type) { bad_implicit_conversion(args[2]); } // extract string data GET_STR_DATA_LEN(args[0], str, str_len); GET_STR_DATA_LEN(args[1], old, old_len); GET_STR_DATA_LEN(args[2], new, new_len); // old won't exist in str if it's longer, so nothing to replace if (old_len > str_len) { return args[0]; } // data for the replaced string byte *data = NULL; vstr_t vstr; // do 2 passes over the string: // first pass computes the required length of the replaced string // second pass does the replacements for (;;) { mp_uint_t replaced_str_index = 0; mp_uint_t num_replacements_done = 0; const byte *old_occurrence; const byte *offset_ptr = str; mp_uint_t str_len_remain = str_len; if (old_len == 0) { // if old_str is empty, copy new_str to start of replaced string // copy the replacement string if (data != NULL) { memcpy(data, new, new_len); } replaced_str_index += new_len; num_replacements_done++; } while (num_replacements_done != (mp_uint_t)max_rep && str_len_remain > 0 && (old_occurrence = find_subbytes(offset_ptr, str_len_remain, old, old_len, 1)) != NULL) { if (old_len == 0) { old_occurrence += 1; } // copy from just after end of last occurrence of to-be-replaced string to right before start of next occurrence if (data != NULL) { memcpy(data + replaced_str_index, offset_ptr, old_occurrence - offset_ptr); } replaced_str_index += old_occurrence - offset_ptr; // copy the replacement string if (data != NULL) { memcpy(data + replaced_str_index, new, new_len); } replaced_str_index += new_len; offset_ptr = old_occurrence + old_len; str_len_remain = str + str_len - offset_ptr; num_replacements_done++; } // copy from just after end of last occurrence of to-be-replaced string to end of old string if (data != NULL) { memcpy(data + replaced_str_index, offset_ptr, str_len_remain); } replaced_str_index += str_len_remain; if (data == NULL) { // first pass if (num_replacements_done == 0) { // no substr found, return original string return args[0]; } else { // substr found, allocate new string vstr_init_len(&vstr, replaced_str_index); data = (byte*)vstr.buf; assert(data != NULL); } } else { // second pass, we are done break; } } return mp_obj_new_str_from_vstr(self_type, &vstr); } STATIC mp_obj_t str_count(size_t n_args, const mp_obj_t *args) { const mp_obj_type_t *self_type = mp_obj_get_type(args[0]); assert(2 <= n_args && n_args <= 4); assert(MP_OBJ_IS_STR_OR_BYTES(args[0])); // check argument type if (mp_obj_get_type(args[1]) != self_type) { bad_implicit_conversion(args[1]); } GET_STR_DATA_LEN(args[0], haystack, haystack_len); GET_STR_DATA_LEN(args[1], needle, needle_len); const byte *start = haystack; const byte *end = haystack + haystack_len; if (n_args >= 3 && args[2] != mp_const_none) { start = str_index_to_ptr(self_type, haystack, haystack_len, args[2], true); } if (n_args >= 4 && args[3] != mp_const_none) { end = str_index_to_ptr(self_type, haystack, haystack_len, args[3], true); } // if needle_len is zero then we count each gap between characters as an occurrence if (needle_len == 0) { return MP_OBJ_NEW_SMALL_INT(unichar_charlen((const char*)start, end - start) + 1); } // count the occurrences mp_int_t num_occurrences = 0; for (const byte *haystack_ptr = start; haystack_ptr + needle_len <= end;) { if (memcmp(haystack_ptr, needle, needle_len) == 0) { num_occurrences++; haystack_ptr += needle_len; } else { haystack_ptr = utf8_next_char(haystack_ptr); } } return MP_OBJ_NEW_SMALL_INT(num_occurrences); } STATIC mp_obj_t str_partitioner(mp_obj_t self_in, mp_obj_t arg, mp_int_t direction) { assert(MP_OBJ_IS_STR_OR_BYTES(self_in)); mp_obj_type_t *self_type = mp_obj_get_type(self_in); if (self_type != mp_obj_get_type(arg)) { bad_implicit_conversion(arg); } GET_STR_DATA_LEN(self_in, str, str_len); GET_STR_DATA_LEN(arg, sep, sep_len); if (sep_len == 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "empty separator")); } mp_obj_t result[3]; if (self_type == &mp_type_str) { result[0] = MP_OBJ_NEW_QSTR(MP_QSTR_); result[1] = MP_OBJ_NEW_QSTR(MP_QSTR_); result[2] = MP_OBJ_NEW_QSTR(MP_QSTR_); } else { result[0] = mp_const_empty_bytes; result[1] = mp_const_empty_bytes; result[2] = mp_const_empty_bytes; } if (direction > 0) { result[0] = self_in; } else { result[2] = self_in; } const byte *position_ptr = find_subbytes(str, str_len, sep, sep_len, direction); if (position_ptr != NULL) { mp_uint_t position = position_ptr - str; result[0] = mp_obj_new_str_of_type(self_type, str, position); result[1] = arg; result[2] = mp_obj_new_str_of_type(self_type, str + position + sep_len, str_len - position - sep_len); } return mp_obj_new_tuple(3, result); } STATIC mp_obj_t str_partition(mp_obj_t self_in, mp_obj_t arg) { return str_partitioner(self_in, arg, 1); } STATIC mp_obj_t str_rpartition(mp_obj_t self_in, mp_obj_t arg) { return str_partitioner(self_in, arg, -1); } // Supposedly not too critical operations, so optimize for code size STATIC mp_obj_t str_caseconv(unichar (*op)(unichar), mp_obj_t self_in) { GET_STR_DATA_LEN(self_in, self_data, self_len); vstr_t vstr; vstr_init_len(&vstr, self_len); byte *data = (byte*)vstr.buf; for (mp_uint_t i = 0; i < self_len; i++) { *data++ = op(*self_data++); } return mp_obj_new_str_from_vstr(mp_obj_get_type(self_in), &vstr); } STATIC mp_obj_t str_lower(mp_obj_t self_in) { return str_caseconv(unichar_tolower, self_in); } STATIC mp_obj_t str_upper(mp_obj_t self_in) { return str_caseconv(unichar_toupper, self_in); } STATIC mp_obj_t str_uni_istype(bool (*f)(unichar), mp_obj_t self_in) { GET_STR_DATA_LEN(self_in, self_data, self_len); if (self_len == 0) { return mp_const_false; // default to False for empty str } if (f != unichar_isupper && f != unichar_islower) { for (mp_uint_t i = 0; i < self_len; i++) { if (!f(*self_data++)) { return mp_const_false; } } } else { bool contains_alpha = false; for (mp_uint_t i = 0; i < self_len; i++) { // only check alphanumeric characters if (unichar_isalpha(*self_data++)) { contains_alpha = true; if (!f(*(self_data - 1))) { // -1 because we already incremented above return mp_const_false; } } } if (!contains_alpha) { return mp_const_false; } } return mp_const_true; } STATIC mp_obj_t str_isspace(mp_obj_t self_in) { return str_uni_istype(unichar_isspace, self_in); } STATIC mp_obj_t str_isalpha(mp_obj_t self_in) { return str_uni_istype(unichar_isalpha, self_in); } STATIC mp_obj_t str_isdigit(mp_obj_t self_in) { return str_uni_istype(unichar_isdigit, self_in); } STATIC mp_obj_t str_isupper(mp_obj_t self_in) { return str_uni_istype(unichar_isupper, self_in); } STATIC mp_obj_t str_islower(mp_obj_t self_in) { return str_uni_istype(unichar_islower, self_in); } #if MICROPY_CPYTHON_COMPAT // These methods are superfluous in the presense of str() and bytes() // constructors. // TODO: should accept kwargs too STATIC mp_obj_t bytes_decode(size_t n_args, const mp_obj_t *args) { mp_obj_t new_args[2]; if (n_args == 1) { new_args[0] = args[0]; new_args[1] = MP_OBJ_NEW_QSTR(MP_QSTR_utf_hyphen_8); args = new_args; n_args++; } return mp_obj_str_make_new(&mp_type_str, n_args, 0, args); } // TODO: should accept kwargs too STATIC mp_obj_t str_encode(size_t n_args, const mp_obj_t *args) { mp_obj_t new_args[2]; if (n_args == 1) { new_args[0] = args[0]; new_args[1] = MP_OBJ_NEW_QSTR(MP_QSTR_utf_hyphen_8); args = new_args; n_args++; } return bytes_make_new(NULL, n_args, 0, args); } #endif mp_int_t mp_obj_str_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) { if (flags == MP_BUFFER_READ) { GET_STR_DATA_LEN(self_in, str_data, str_len); bufinfo->buf = (void*)str_data; bufinfo->len = str_len; bufinfo->typecode = 'B'; // bytes should be unsigned, so should unicode byte-access return 0; } else { // can't write to a string bufinfo->buf = NULL; bufinfo->len = 0; bufinfo->typecode = -1; return 1; } } #if MICROPY_CPYTHON_COMPAT MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(bytes_decode_obj, 1, 3, bytes_decode); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_encode_obj, 1, 3, str_encode); #endif MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_find_obj, 2, 4, str_find); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_rfind_obj, 2, 4, str_rfind); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_index_obj, 2, 4, str_index); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_rindex_obj, 2, 4, str_rindex); MP_DEFINE_CONST_FUN_OBJ_2(str_join_obj, str_join); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_split_obj, 1, 3, mp_obj_str_split); #if MICROPY_PY_BUILTINS_STR_SPLITLINES MP_DEFINE_CONST_FUN_OBJ_KW(str_splitlines_obj, 1, str_splitlines); #endif MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_rsplit_obj, 1, 3, str_rsplit); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_startswith_obj, 2, 3, str_startswith); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_endswith_obj, 2, 3, str_endswith); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_strip_obj, 1, 2, str_strip); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_lstrip_obj, 1, 2, str_lstrip); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_rstrip_obj, 1, 2, str_rstrip); MP_DEFINE_CONST_FUN_OBJ_KW(str_format_obj, 1, mp_obj_str_format); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_replace_obj, 3, 4, str_replace); MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(str_count_obj, 2, 4, str_count); MP_DEFINE_CONST_FUN_OBJ_2(str_partition_obj, str_partition); MP_DEFINE_CONST_FUN_OBJ_2(str_rpartition_obj, str_rpartition); MP_DEFINE_CONST_FUN_OBJ_1(str_lower_obj, str_lower); MP_DEFINE_CONST_FUN_OBJ_1(str_upper_obj, str_upper); MP_DEFINE_CONST_FUN_OBJ_1(str_isspace_obj, str_isspace); MP_DEFINE_CONST_FUN_OBJ_1(str_isalpha_obj, str_isalpha); MP_DEFINE_CONST_FUN_OBJ_1(str_isdigit_obj, str_isdigit); MP_DEFINE_CONST_FUN_OBJ_1(str_isupper_obj, str_isupper); MP_DEFINE_CONST_FUN_OBJ_1(str_islower_obj, str_islower); STATIC const mp_rom_map_elem_t str8_locals_dict_table[] = { #if MICROPY_CPYTHON_COMPAT { MP_ROM_QSTR(MP_QSTR_decode), MP_ROM_PTR(&bytes_decode_obj) }, #if !MICROPY_PY_BUILTINS_STR_UNICODE // If we have separate unicode type, then here we have methods only // for bytes type, and it should not have encode() methods. Otherwise, // we have non-compliant-but-practical bytestring type, which shares // method table with bytes, so they both have encode() and decode() // methods (which should do type checking at runtime). { MP_ROM_QSTR(MP_QSTR_encode), MP_ROM_PTR(&str_encode_obj) }, #endif #endif { MP_ROM_QSTR(MP_QSTR_find), MP_ROM_PTR(&str_find_obj) }, { MP_ROM_QSTR(MP_QSTR_rfind), MP_ROM_PTR(&str_rfind_obj) }, { MP_ROM_QSTR(MP_QSTR_index), MP_ROM_PTR(&str_index_obj) }, { MP_ROM_QSTR(MP_QSTR_rindex), MP_ROM_PTR(&str_rindex_obj) }, { MP_ROM_QSTR(MP_QSTR_join), MP_ROM_PTR(&str_join_obj) }, { MP_ROM_QSTR(MP_QSTR_split), MP_ROM_PTR(&str_split_obj) }, #if MICROPY_PY_BUILTINS_STR_SPLITLINES { MP_ROM_QSTR(MP_QSTR_splitlines), MP_ROM_PTR(&str_splitlines_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_rsplit), MP_ROM_PTR(&str_rsplit_obj) }, { MP_ROM_QSTR(MP_QSTR_startswith), MP_ROM_PTR(&str_startswith_obj) }, { MP_ROM_QSTR(MP_QSTR_endswith), MP_ROM_PTR(&str_endswith_obj) }, { MP_ROM_QSTR(MP_QSTR_strip), MP_ROM_PTR(&str_strip_obj) }, { MP_ROM_QSTR(MP_QSTR_lstrip), MP_ROM_PTR(&str_lstrip_obj) }, { MP_ROM_QSTR(MP_QSTR_rstrip), MP_ROM_PTR(&str_rstrip_obj) }, { MP_ROM_QSTR(MP_QSTR_format), MP_ROM_PTR(&str_format_obj) }, { MP_ROM_QSTR(MP_QSTR_replace), MP_ROM_PTR(&str_replace_obj) }, { MP_ROM_QSTR(MP_QSTR_count), MP_ROM_PTR(&str_count_obj) }, { MP_ROM_QSTR(MP_QSTR_partition), MP_ROM_PTR(&str_partition_obj) }, { MP_ROM_QSTR(MP_QSTR_rpartition), MP_ROM_PTR(&str_rpartition_obj) }, { MP_ROM_QSTR(MP_QSTR_lower), MP_ROM_PTR(&str_lower_obj) }, { MP_ROM_QSTR(MP_QSTR_upper), MP_ROM_PTR(&str_upper_obj) }, { MP_ROM_QSTR(MP_QSTR_isspace), MP_ROM_PTR(&str_isspace_obj) }, { MP_ROM_QSTR(MP_QSTR_isalpha), MP_ROM_PTR(&str_isalpha_obj) }, { MP_ROM_QSTR(MP_QSTR_isdigit), MP_ROM_PTR(&str_isdigit_obj) }, { MP_ROM_QSTR(MP_QSTR_isupper), MP_ROM_PTR(&str_isupper_obj) }, { MP_ROM_QSTR(MP_QSTR_islower), MP_ROM_PTR(&str_islower_obj) }, }; STATIC MP_DEFINE_CONST_DICT(str8_locals_dict, str8_locals_dict_table); #if !MICROPY_PY_BUILTINS_STR_UNICODE STATIC mp_obj_t mp_obj_new_str_iterator(mp_obj_t str); const mp_obj_type_t mp_type_str = { { &mp_type_type }, .name = MP_QSTR_str, .print = str_print, .make_new = mp_obj_str_make_new, .binary_op = mp_obj_str_binary_op, .subscr = bytes_subscr, .getiter = mp_obj_new_str_iterator, .buffer_p = { .get_buffer = mp_obj_str_get_buffer }, .locals_dict = (mp_obj_dict_t*)&str8_locals_dict, }; #endif // Reuses most of methods from str const mp_obj_type_t mp_type_bytes = { { &mp_type_type }, .name = MP_QSTR_bytes, .print = str_print, .make_new = bytes_make_new, .binary_op = mp_obj_str_binary_op, .subscr = bytes_subscr, .getiter = mp_obj_new_bytes_iterator, .buffer_p = { .get_buffer = mp_obj_str_get_buffer }, .locals_dict = (mp_obj_dict_t*)&str8_locals_dict, }; // the zero-length bytes const mp_obj_str_t mp_const_empty_bytes_obj = {{&mp_type_bytes}, 0, 0, NULL}; // Create a str/bytes object using the given data. New memory is allocated and // the data is copied across. mp_obj_t mp_obj_new_str_of_type(const mp_obj_type_t *type, const byte* data, size_t len) { mp_obj_str_t *o = m_new_obj(mp_obj_str_t); o->base.type = type; o->len = len; if (data) { o->hash = qstr_compute_hash(data, len); byte *p = m_new(byte, len + 1); o->data = p; memcpy(p, data, len * sizeof(byte)); p[len] = '\0'; // for now we add null for compatibility with C ASCIIZ strings } return MP_OBJ_FROM_PTR(o); } // Create a str/bytes object from the given vstr. The vstr buffer is resized to // the exact length required and then reused for the str/bytes object. The vstr // is cleared and can safely be passed to vstr_free if it was heap allocated. mp_obj_t mp_obj_new_str_from_vstr(const mp_obj_type_t *type, vstr_t *vstr) { // if not a bytes object, look if a qstr with this data already exists if (type == &mp_type_str) { qstr q = qstr_find_strn(vstr->buf, vstr->len); if (q != MP_QSTR_NULL) { vstr_clear(vstr); vstr->alloc = 0; return MP_OBJ_NEW_QSTR(q); } } // make a new str/bytes object mp_obj_str_t *o = m_new_obj(mp_obj_str_t); o->base.type = type; o->len = vstr->len; o->hash = qstr_compute_hash((byte*)vstr->buf, vstr->len); if (vstr->len + 1 == vstr->alloc) { o->data = (byte*)vstr->buf; } else { o->data = (byte*)m_renew(char, vstr->buf, vstr->alloc, vstr->len + 1); } ((byte*)o->data)[o->len] = '\0'; // add null byte vstr->buf = NULL; vstr->alloc = 0; return MP_OBJ_FROM_PTR(o); } mp_obj_t mp_obj_new_str(const char* data, mp_uint_t len, bool make_qstr_if_not_already) { if (make_qstr_if_not_already) { // use existing, or make a new qstr return MP_OBJ_NEW_QSTR(qstr_from_strn(data, len)); } else { qstr q = qstr_find_strn(data, len); if (q != MP_QSTR_NULL) { // qstr with this data already exists return MP_OBJ_NEW_QSTR(q); } else { // no existing qstr, don't make one return mp_obj_new_str_of_type(&mp_type_str, (const byte*)data, len); } } } mp_obj_t mp_obj_str_intern(mp_obj_t str) { GET_STR_DATA_LEN(str, data, len); return MP_OBJ_NEW_QSTR(qstr_from_strn((const char*)data, len)); } mp_obj_t mp_obj_new_bytes(const byte* data, mp_uint_t len) { return mp_obj_new_str_of_type(&mp_type_bytes, data, len); } bool mp_obj_str_equal(mp_obj_t s1, mp_obj_t s2) { if (MP_OBJ_IS_QSTR(s1) && MP_OBJ_IS_QSTR(s2)) { return s1 == s2; } else { GET_STR_HASH(s1, h1); GET_STR_HASH(s2, h2); // If any of hashes is 0, it means it's not valid if (h1 != 0 && h2 != 0 && h1 != h2) { return false; } GET_STR_DATA_LEN(s1, d1, l1); GET_STR_DATA_LEN(s2, d2, l2); if (l1 != l2) { return false; } return memcmp(d1, d2, l1) == 0; } } STATIC void bad_implicit_conversion(mp_obj_t self_in) { if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "can't convert to str implicitly")); } else { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "can't convert '%s' object to str implicitly", mp_obj_get_type_str(self_in))); } } // use this if you will anyway convert the string to a qstr // will be more efficient for the case where it's already a qstr qstr mp_obj_str_get_qstr(mp_obj_t self_in) { if (MP_OBJ_IS_QSTR(self_in)) { return MP_OBJ_QSTR_VALUE(self_in); } else if (MP_OBJ_IS_TYPE(self_in, &mp_type_str)) { mp_obj_str_t *self = MP_OBJ_TO_PTR(self_in); return qstr_from_strn((char*)self->data, self->len); } else { bad_implicit_conversion(self_in); } } // only use this function if you need the str data to be zero terminated // at the moment all strings are zero terminated to help with C ASCIIZ compatibility const char *mp_obj_str_get_str(mp_obj_t self_in) { if (MP_OBJ_IS_STR_OR_BYTES(self_in)) { GET_STR_DATA_LEN(self_in, s, l); (void)l; // len unused return (const char*)s; } else { bad_implicit_conversion(self_in); } } const char *mp_obj_str_get_data(mp_obj_t self_in, mp_uint_t *len) { if (MP_OBJ_IS_STR_OR_BYTES(self_in)) { GET_STR_DATA_LEN(self_in, s, l); *len = l; return (const char*)s; } else { bad_implicit_conversion(self_in); } } #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C const byte *mp_obj_str_get_data_no_check(mp_obj_t self_in, size_t *len) { if (MP_OBJ_IS_QSTR(self_in)) { return qstr_data(MP_OBJ_QSTR_VALUE(self_in), len); } else { *len = ((mp_obj_str_t*)self_in)->len; return ((mp_obj_str_t*)self_in)->data; } } #endif /******************************************************************************/ /* str iterator */ typedef struct _mp_obj_str8_it_t { mp_obj_base_t base; mp_fun_1_t iternext; mp_obj_t str; mp_uint_t cur; } mp_obj_str8_it_t; #if !MICROPY_PY_BUILTINS_STR_UNICODE STATIC mp_obj_t str_it_iternext(mp_obj_t self_in) { mp_obj_str8_it_t *self = self_in; GET_STR_DATA_LEN(self->str, str, len); if (self->cur < len) { mp_obj_t o_out = mp_obj_new_str((const char*)str + self->cur, 1, true); self->cur += 1; return o_out; } else { return MP_OBJ_STOP_ITERATION; } } STATIC mp_obj_t mp_obj_new_str_iterator(mp_obj_t str) { mp_obj_str8_it_t *o = m_new_obj(mp_obj_str8_it_t); o->base.type = &mp_type_polymorph_iter; o->iternext = str_it_iternext; o->str = str; o->cur = 0; return o; } #endif STATIC mp_obj_t bytes_it_iternext(mp_obj_t self_in) { mp_obj_str8_it_t *self = MP_OBJ_TO_PTR(self_in); GET_STR_DATA_LEN(self->str, str, len); if (self->cur < len) { mp_obj_t o_out = MP_OBJ_NEW_SMALL_INT(str[self->cur]); self->cur += 1; return o_out; } else { return MP_OBJ_STOP_ITERATION; } } mp_obj_t mp_obj_new_bytes_iterator(mp_obj_t str) { mp_obj_str8_it_t *o = m_new_obj(mp_obj_str8_it_t); o->base.type = &mp_type_polymorph_iter; o->iternext = bytes_it_iternext; o->str = str; o->cur = 0; return MP_OBJ_FROM_PTR(o); }